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EXECUTIVE SUMMARY 

The research conducted under this grant focused on the design and analysis of new algorithms within the 

generalized hill climbing algorithm framework for address intractable discrete optimization problems. 

The major technical accomplishments achieved include 

i) the introduction of the simultaneous generalized hill climbing (SGHC) algorithm framework for 

addressing sets of related infractable discrete optimization problems, 

a) the formulation of sufficient conditions under which SGHC algorithms converge, 

Hi) the formulation of fmite-time performance measure for generalized hill climbing (GHC) 

algorithms. 

iv) the application of such measures to a static simulated annealing algorithm, which demonstrated 

how the performance of such algorithms can be predicted. 

v) the application of GHC algorithms to a construction site-leveling problem. 

Several other problems were studied during the grant period, including estimation procedures for 

discrete event simulation problems, aviation security system design and optimization issues, and a 

pediatric vaccine formulary design problem. All the accomplishments are documented in several 

archival journal articles and conference proceedings. In addition, many of the results have been 

presented at national and international conferences, and have won awards for their contribution. 

Three Ph.D. dissertations were completed during the period of the grant. Colonel (Sel.) Darrall 

Henderson successfully defended and submitted his Ph.D. dissertation "Assessing the Finite-Time 

Performance of Local Search Algorithms" in April 2001. Dr. Tevfik Aytemiz successfully defended and 

submitted his Ph.D. dissertation " A Probabilistic Study of 3-SATISFIABILITY" in July 2001. Dr. 

Derek Armstrong successfully defended and submitted his Ph.D. dissertation "A Local Search Algorithm 

Approach to Analyzing the Complexity of Discrete Optimization Problems" in May 2002. 



1. Generalized Hill Climbing Algorithms 
Generalized hill climbing algorithms (Jacobson et al. 1998) provide a well-defined framework to model 
algorithms for intractable discrete optimization problems. Generalized hill climbing algorithms allow 
inferior solutions to be visited enroute to optimal solutions. This hill climbing capability is the basis for 
the search strategy's name. To formally describe the generalized hill climbing algorithm framework, 
several definitions are needed. 

For a discrete optimization problem, define the solution space, Q, as a finite set of all possible 
solutions. Define an objective function f: Q ^ [0,+oo] that assigns a non-negative value to each element 
of the solution space. An important component of GHC algorithms is the neighborhood function, TJ: Q 

->■ 2", where ri(co) c Q for all co e Q. Solutions in a neighborhood are generated uniformly at each 
iteration of a GHC algorithm execution if, for all coeQ, with ©' e ri(co), 

P{a)' is selected as the neighbor of co at a given iteration of a GHC algorithm} = 1 / I ri(co) |. 

Unless otherwise stated, assume that the neighbors are generated uniformly at each iteration of a GHC 
algorithm. The GHC algorithm is described in pseudo-code form (Jacobson et al. 1998): 

Set the outer loop counter bound K and the inner loop counter bounds N(k), k = 1,2,.. .,K 
Define a set of hill climbing (random) variables Rk: Q x Q -> i?? u {-oo,+oo}, k = 1,2,.. .,K 
Set the iteration indices i = 0, k = n = 1 
Select an initial solution co(0) e Q 
Repeat while k < K 

Repeat while n < N(k) 
Generate a solution co e ri(co(i)) and calculate 5(a)(i),o)) = f(co) - f(co(i)) 
If Rk(co(i),a)) > 8(co(i),co), then co(i+l) <- co (accept improving or hill climbing moves) 
If Rk(co(i),co) < 5(co(i),co), then co(i+l) <- co(i)        (reject hill climbing moves) 
n^-n+1, i<-i+l 

{/«///n = N(k) 
n<- l,k<-k+l 

Until k = K 

Note that the outer and inner loop bounds, K and N(k), k = 1,2,.. .,K, respectively, may all be fixed, or K 
can be fixed and the N(k), k = 1,2,.. .,K, are random variables with values determined by the solution at 
the end of each set of inner loop iterations satisfying some property (e.g., the solution is a local optima). 
Moreover, assume that the hill climbing random variables have finite means and finite variances for all k 
and for all possible pairs of elements in the solution space (i.e., E[Rk(co(i),co)] < +00 and Var[Rk(co(i),co)] 

K 

< +00 for all co(i) e Q, coeri(co(i)), and for all k = 1,2,.. .,K, i = 1,2,.. .,1 = X   N(k)). 

The neighborhood function establishes relationships between the solutions in the solution space, 
hence allows the solution space to be traversed or searched by moving between solutions. To ensure that 
the solution space is not fragmented, assume that all the solutions in the solution space (with 
neighborhood function rj) are reachable; that is, for all co',co"eQ, there exists a set of solutions coj, CO2,..., 
cOm e Q such that cOr G r|(cOr.i), r = l,2,...,m+l, where co' = cOo and co" = cOn^i. Note that if all solutions in a 
solution space are reachable, then the solution space (with neighborhood function rj) is said to be 
reachable. The goal is to identify a globally optimal solution co* (i.e., f(co*) < f(co) for all co e Q). 

2. Simultaneous Generalized Hill Climbing Algorithms 
One accomplishment during the term of this grant has been the development of a mathematical 
framework for simultaneously addressing a set of related discrete optimization problems using local 
search algorithms. The resulting algorithms, termed simultaneous generalized hill climbing (SGHC) 
algorithms (Vaughan and Jacobson 2003a), can be applied to a wide variety of sets of related 



manufacturing, military and service industry discrete optimization problems. Many well-known local 
search algorithms can be embedded within the SGHC algorithm framework, including simulated 
aimealing, threshold accepting, Monte Carlo search, and pure local search (among others). 

A SGHC algorithm probabilistically moves between the set of related discrete optimization problems 
during its execution according to a problem generation probability function. The problem generation 
probability function is shown to be a stochastic process that satisfies the Markov property. Therefore, 
given a SGHC algorithm, movement between discrete optimization problems can be modeled as a 
Markov chain. Sufficient conditions that guarantee that this Markov chain has a uniform stationary 
probability distribution are obtained. Computational results are presented with SGHC algorithms for a 
set of traveling salesman problems. For comparison purposes, GHC algorithms are also applied 
individually to each traveling salesman problem. These computational results suggest that optimal/near 
optimal solutions can be reached more effectively using a SGHC algorithm. 

It is common to encounter several discrete optimization problems where a relationship exists between 
the solution spaces of the individual problems. In general, these problems are approached individually. 
However, because of their similarities, the same computational tools can be effectively used to address 
them simultaneously. For example, the Material Process Design Branch of the Air Force Research 
Laboratory, Wright Patterson Air Force Base, has several similar discrete manufacturing process design 
optimization problems under study (see Jacobson et al. 1998, Sullivan and Jacobson 2000). These 
problems are difficult to solve due in part to the large number of design sequences and associated input 
parameter setting combinations that exist. Local search algorithms in the generalized hill climbing (GHC) 
algorithm framework were introduced to address such manufacturing design problems (Jacobson et al. 
1998). Initial results with GHC algorithms required the manufacturing process design sequence to be 
fixed, with the GHC algorithm used to identify optimal input parameter settings for each feasible design 
sequence (Jacobson et al. 1998). 

The SGHC algorithm framework is motivated by a study reported in Vaughan et al. (2000) which 
develops a new neighborhood function that allows a local search algorithm (in the GHC algorithm 
framework) to be used to also identify the optimal discrete manufacturing process design sequence among 
a set of valid design sequences. This neighborhood function allows the GHC algorithm to simultaneously 
optimize over both the design sequences and the input parameters, eliminating the need to approach each 
design sequence (i.e., a discrete optimization problem) individually. The computational results in Vaughan 
et al. (2000) suggest that such an approach is feasible and yields reasonable results. However the 
neighborhood function developed for this purpose is overly complex and problem specific. 

The following analysis generalizes the results reported in Vaughan et al. (2000) by formally defining a 
class of sets of discrete optimization problems where a relationship exists, similar to the one described for 
the manufacturing problem. A set of discrete optimization problems contained in this class is defined as a 
set of fundamentally related discrete optimization problems. The SGHC algorithm framework is used to 
simultaneously approach sets of fundamentally related discrete optimization problems using GHC 
algorithms. A metric between elements in a set of fundamentally related discrete optimization problems is 
infroduced to evaluate if and when it is advantageous to address a particular set of discrete optimization 
problems with a SGHC algorithm. 

Vaughan et al. (2000) introduces a new neighborhood function for simultaneously addressing a set of 
related manufacturing process design optimization problems using GHC algorithms. This neighborhood 
function allows for simultaneous optimization across the design sequences and the controllable input 
parameters. The application of such optimization algorithms (that simultaneously explore multiple 
manufacturing process designs) using computer simulation is a new advance in how optimal manufacturing 
process designs can be efficiently identified (Vaughan et al. 2000). 

It is common to encounter several discrete optimization problems where a relationship between the 
solution spaces of the individual problems exists. For example, Henderson, Vaughan and Jacobson (2003) 
introduces a multiple platform search and rescue optimization problem that is modeled as several discrete 
optimization problems. They show that for this set, the solution spaces of the individual problems overlap 



and are a set of fundamentally related discrete optimization problems. Vaughan et al. (2000) describes an 
integrated blade rotor discrete manufacturing process design problem that illustrates how certain 
manufacturing problems can be modeled as several discrete optimization problems with overlapping 
solution spaces that satisfy the definition of fundamentally related discrete optimization problems. Note 
that this paper relaxes the methodology used to address the integrated blade rotor discrete manufacturing 
process design problem described in Vaughan et al. (2000) to develop a general mathematical framework 
for simultaneously approaching sets of fundamentally related discrete optimization problems. 

To discuss the class of sets of discrete optimization problems for which SGHC algorithms are 
applicable, the following definitions are needed. Consider a set of discrete optimization problems S = {Di, 
D2, ..., Dm}, where each discrete optimization problem Dy = {Q.y, fy) is fully defined by a finite set of 
solutions Qy and a real-valued objective function fyi D.y-^R. A set of discrete optimization problems S is 
fundamentally related by a set Ob = {ci, C2, ..., c„} of objects if the solution space Qy of each discrete 
optimization problem Dy = (Qy, fy) G S can be fully defined by exactly one subset of Ob. Then for every 
discrete optimization problem Dy = (Qy, fy) e S, there is exactly one set Cy c Ob such that Cy completely 
defines Qy. The set Cy is defined to be \hQ fundamental relation set of Dy. 

Let S be a set of fundamentally related discrete optimization problems related by Ob. Consider Dy e S 
where Cy c Ob is the fundamental relation set of Dy. Then Cy can be represented by the binary activity 
vector c^ e {0, 1}°, c'' = (Bi, B2, ..., Bn), where 

fl,   if C; is contained in C„ 
Bi=^ ' ^ 

[ 0,   otherwise 

SGHC algorithms are developed to approach sets of fundamentally related discrete optimization 
problems. When two discrete optimization problems, Dy and Dq, are contained in a set of fundamentally 
related discrete optimization problems with respective fundamental relation sets, Cy and Cq, where jCyOCql 
/ \0b\ is close to one, it is reasonable to conjecture that the optimal/near optimal solutions of Dy and Dq are 
similar. The following detachment metric is designed to determine if two discrete optimization problems, 
in a set of fundamentally related discrete optimization, are close together, hence have similar solution 
spaces. 

Let S be a set of fundamentally related discrete optimization problems related by Ob. To formally 
define the detachment metric p between discrete optimization problems Dy, Dq G S, consider the metric 
space <E°, p>, with S = {0, 1}, where the detachment metric p is defined on S" x E° such that the distance 
between two discrete optimization problems can be determined by considering their binary activity vectors 

Q!'={CI ,cl,...,cl) G S" and c*" = (cf, Cj,..., c^) e S". Define the detachment metric as 

P(Dy,Dq): c^ -c'' + c^ -c^ + ...+ cl-cl 

(Royden 1988, p. 140). The detachment metric provides a way to measure the overlap (or lack of overlap) 
between the members in a set of fundamentally related discrete optimization problems. 

To apply SGHC algorithms, a neighborhood function with an associated problem generation 
probability function for moving between discrete optimization problems during an execution of a SGHC 
algorithm must be developed. The neighborhood function is defined such that each discrete optimization 
problem has the entire set of discrete optimization problems as neighbors. Therefore, whenever this 
neighborhood function is applied, every discrete optimization problem is a candidate problem (i.e., has a 
positive probability of being selected). The problem generation probability function determines the 
probability of selecting a candidate problem. 

More formally, define the neighborhood function, riset: S -> 2^, such that riset(Dy) = S, for all Dy G S. 

Define the problem generation probability function h^ ^ (k, p(Dy, Dq)), such that 

0 < h^^j^^ (k, p(Dy, Dq)) < 1, for every Dy G S, Dq e riset(Dy), 



where 

Z        hj^jj  (k, p(Dy, Dq)) = 1, for every Dy e S, Dq G riset(Dy) 

for every k = 1, 2, ..., K. 
Note that the problem generation probability function (the probability of selecting a candidate problem, 

Dq e "HsetCDy), Dy e S) can be a function of both the outer loop iteration k = 1,2,...,K and the detachment 
metric p(Dy, Dq). 

SGHC algorithms provide a mathematical framework for addressing several fundamentally related 
discrete optimization problems simultaneously using GHC algorithms. SGHC algorithms seek to find 
optimal solutions for sets of fundamentally related discrete optimization problems by allowing the 
algorithm to probabilistically move between discrete optimization problems. When a new discrete 
optimization problem is generated, an initial solution for this new problem is also generated using 
information from the previous discrete optimization problem's final solution. The inner and outer loop 
structure defined for GHC algorithms can be used in SGHC algorithms, where SGHC algorithms restrict 
possible movement between discrete optimization problems to the first iteration of the outer loop iterations. 
This constraint ensures that a GHC algorithm is applied to each discrete optimization problem at least N(k) 
iterations each time it is generated (i.e., initially visited). Note that this was not the case for the 
manufacturing problem presented in Vaughan et al. (2000), where movement between discrete optimization 
problems was possible during all inner loop iterations. The SGHC algorithm is presented below in pseudo- 
code form. 

Set the outer loop counter bound K and the inner loop counter bounds N(k), k = 0,1,2,.. .,K 
Define a set of hill climbing (random) variables R^: Q x Q -> i^u {-co,+oo}, k = 1,2,.. .,K 
Set the iteration indices N(0) = i = 0, k = n=l 
Select an initial discrete optimization problem D(0) e S and an initial solution oo(0,0) e Q(0) 
Repeat while k < K 

Generate a discrete optimization problem D(k) e riset(D(k-l)) 
If D(k) 9^ D(k-l), generate a solution co e Q(k) and (B(k, 1) <- ra 
Else (o(k, 1) <r- (J0(k-1, N(k-1)) 
Repeat while n < N(k) 

Generate a solution co e ri(a)(k, i)) 
Compute 5(co(k, i),0)) = f((a)-f(co(k, i)) 
If Rk((B(k, i),co) > 5(co(k, i),co), then (a(k, i+1) <- co 
If Rk((o(k, i),co) < 5(o)(k, i),ffl), then m{k, i+1) <- co(k, i) 
n<-n+l, i<- i+1 

Until n = N(k) 
n<- l,k<-k+l 

Until k = K 

All SGHC algorithms are formulated using three components, a set of hill climbing random variables 
{Rjc}, a neighborhood function r\ between solutions, and a neighborhood function riset between discrete 
optimization problems. The two-tuple (k,) represents the irmer loop iteration i = 1,2,.. .,N(k), during outer 
loop iteration k = 1,2,...,K. D(k) is the discrete optimization problem the algorithm is executing over 
during the k* outer loop iteration, k = 1,2,.. .,K, where the solution space of D(k) is depicted by Q(k). 

Markov chain theory is an effective tool for studying the performance of local search algorithms. The 
following analysis shows that an application of the SGHC algorithm can be modeled using Markov chains. 
In particular, an application of the GHC algorithm is first modeled using a Markov chain. Then an 
application of the SGHC algorithm is modeled by a set of Markov Chains. 

To show that an application of the GHC algorithm can be modeled with a Markov chain, the following 
definitions are needed. A stochastic process is a family of random variables defined on some state space. 
If there are countable many members of the family, the process (termed a discrete-time process) is denoted 



by Qi, Qa, ..., where the set of distinct values assumed by a stochastic process is the state space. If the 
state space is countable or finite, the process is a chain. A stochastic process {Qk}, k = 1,2,... with state 
space Q = {coj, CO2, •■•} satisfies the Markov property if for every n and for all states ©1, ©2, ...,©„ 

Pr{Q„= ©„ I Q„.i= CO„.i, Q„-2= C0n_2, ..., Qi= ©1} = Pr{Qn= ©„ I Qn-1= CO„.i} = P„(n.i). 

A discrete-time stochastic process that satisfies the Markov property is a Markov chain (Isaacson and 
Madsen 1985). 

Let {Qk} denote a discrete-time Markov chain with finite solution space Q = {coi, ©2, •••, copi}. For 
this chain there are |Qf transition probabilities, {Py}, i,j = 1, 2,..., \Q\. The transition matrix associated 
with the Markov chain {Qk} is P, where Py is the probability of moving firom state ©; to state ©j. 

An application of a GHC algorithm can be modeled by a stochastic process {iQ* }, k = 1,2,.. .,K, n = 

1,2,.. .,N(k), QI e Q. with solution space Q = {©1, ©2,..., ©pi} that satisfies the Markov property for every 

n and all states ©1, ©2,..., ©n (i-e., { 2* } is a Markov chain). To see this, consider an application of a GHC 

algorithm to a discrete optimization problem with solution space Q = {©1, ©2v; ®in|}- Define gij(k) to be 
the generation probability function for the neighborhood function r], where gij(k) is the probability that 
©jer|(©i) is generated during outer loop iteration k. Consider the inner loop iterations for fixed outer loop 

iteration k = 1, 2,..., K. Let {Q* }, k = 1, 2,..., K, n = 1, 2,..., N(k), g* e Q, be the stochastic process 

where if Q'l = ©j, then the GHC algorithm is at solution ©j during iimer loop iteration n and outer loop 

iteration k (Johnson and Jacobson 2002a,b). If the GHC algorithm is at solution ©i at irmer loop iteration n- 
1, the probability that the algorithm is at solution ©j at iimer loop iteration n is 

PAk)- 

gy{k)FT(R^(ai,(i)j)) > 5y for all ©,. e Q, ©^. e ri(©,.), j * i 

1-   S   PiAk) J = i 
ZeTl((Bj) 

0 otherwise 

independent of the solutions the algorithm visited at inner loop iterations 1,2,.. .,n-2. Therefore 

Hence the Markov property holds. Moreover, for every outer loop iteration k, the Markov chain {Q„} has 

a transition matrix P(k), where Pij(k) is as defined above . 
Recall, that a SGHC algorithm is applied to a set of fundamentally related discrete optimization 

problems. Movement between discrete optimization problems is only possible at outer loop iterations k=l, 
2, ..., K. During the inner loop iterations, the SGHC algorithm is executing over the solution space of the 
current discrete optimization problem using a GHC algorithm 

The following analysis shows that for fixed outer loop iteration k = 1,2,...,K, the stochastic process 
corresponding to the SGHC algorithm solution at inner loop iterations n = 1,2,.. .,N(k) can be modeled by a 
Markov chain that corresponds to an application of a GHC algorithm. Moreover, it is shown that for outer 
loop iterations k = 1,2,...,K, the possible movement between discrete optimization problems is a stochastic 
process that satisfies the Markov property. 

Consider an application of a SGHC algorithm to a set of fundamentally related discrete optimization 
problems S = {Di, D2,..., D^}, where each discrete optimization problem Dy, y = 1,2,.. .,m is fully defined 
by a solution space f^y and an objective function fy (i.e., Dy= (f^y, fy)). Consider the inner loop iterations n 

= 1,2,...,N(k), for fixed outer loop iteration k = 1,2,...,K. Let {g* (Dy)}, k = 1,2,...,K, n = 1,2,...,N(k) be 



the stochastic process where if Q^ (Dy) = ©;, then the SGHC algorithm is at solution cone Qy at inner loop 

iteration n of outer loop iteration k. 
Note that, for all inner loop iterations n = l,2,...,N(k) of an outer loop iteration k = 1,2,...,K, the 

SGHC algorithm is executing over a particular discrete optimization problem fi-om the set of fundamentally 
related discrete optimization problems S = {Di, D2,..., D^} using a GHC algorithm. It was shown that any 
application of a GHC algorithm to a discrete optimization problem can be modeled as a Markov chain. 

Therefore, for fixed outer loop iteration k, the stochastic processes { Q^ (Dy)}, y = 1,2,.. .,m, with transition 

matrices Py, are the Markov chains that correspond to an application of the GHC algorithm to the discrete 
optimization problems Dy, y = 1,2,.. .,m for every n = 1,2,.. .,N(k) and for all states coi, ©2,..., C0|ny|. 

Movement between discrete optimization problems is a stochastic process that satisfies the Markov 
property. To see this, define {^(k)}, *F(k) e S, k = 1,2,... to be the stochastic process where if ^(k) = y, 
then during outer loop iteration k, for all inner loop iterations n = l,2,...,N(k) the SGHC algorithm is 
executing over solutions contained in the solution space of the discrete optimization problem Dy= (Qy, fy). 
If the SGHC algorithm is executing over Qy at outer loop iteration k-1, then the probability that the SGHC 
algorithm is executing over Qq during outer loop iteration k is 

Tyq(k)=/?^^^/k,p(Dy,Dq)), 

independent of the discrete optimization problems the SGHC algorithm visited at outer loop iterations 
1,2,.. .,k-2 and independent of all preceding iimer loop iterations. Therefore, 

Pr{T(k) = q I T(k-l) = y, T(k-2) = y^.z, .. .,^(1) = yj = Pr{Y(k) = q | ^(k-1) = y} = Tyq(k) 

and the Markov property holds. Moreover, the Markov chain {^^(k)} has transition matrix T(k), where 
Tyq(k) is as defined above. 

Consider an application of the SGHC algorithm to a set of fundamentally related discrete optimization 
problems, S. This section presents sufficient conditions that guarantee that a SGHC algorithm will (as k 
approaches +00) be executing over the solution space of each discrete optimization problem Dy e S with 
probability 1/ 1S|, where |S| is the cardinality of S. This result implies that, as k approaches +00, each 
discrete optimization problem in S = {Di, D2,..., Dm} is being explored with equal probability. 

This section develops sufficient conditions that place restrictions on the selection of the problem 
generation probability function hj^ ^ (k, p(Dy, Dq)). A discrete time Markov chain is a stationary Markov 

chain if the probability of going fi-om one state to another state is independent of the iteration at which the 
transition is being made (Isaacson and Madsen 1985). That is, let {Xn} be a stationary Markov chain with 
state space S={Di, D2,..., Dm}. Then for all states Dy and Dq, for all k =-(n-1),-(n-2),...,-1, 0, 1,2, ... , 
Pr{X„= Dyl X„.i = Dq} = Pr{X„+k= Dyl X n+k-i = Dq}. 

The long run distribution (stationary probability distribution) of a stationary Markov chain with 
corresponding transition matrix T is defined by 71 = [^Tj    TTJ    ■■•    ;r„], Tt > 0, for all i = 1,2,...,m, where 

m 

7t = 7tT and X^i ~1 • Equivalently, the long run distribution of a stationary Markov chain is defined by 71 = 
i=l 

[TV^    TV 2    ■■■   ;r„], where 

7ij= lim T/"\ 

If Markov chain {*P(k)} is stationary and has a uniform long run distribution, then as k approaches 
infinity the SGHC algorithm is executing over the solution space of each discrete optimization problem in 
S ={Di, D2,..., Dm} with probability 1 / m = 1 / IS]. Theorem 2.2 provides sufficient conditions for the 
selection of the problem generation probability function /?^ ^ (k, p(Dy, Dq)) that guarantee that the Markov 

chain {^^(k)} has a uniform long run distribution.  Therefore, when the sufficient conditions of Theorem 

10 



2.2 hold, the SGHC algorithm will (as k approaches +00) be in discrete optimization problem Dy G S, y = 
1,2,.. .,m with probability 1 / |S|. 

To prove Theorem 2.1, the following definitions are needed. A subset, C, of the state space, S, is 
closed if Pij = 0 for all i e C, j g C. A Markov chain is irreducible if there exists no nonempty closed set 

other than S itself If S has a proper closed subset, it is reducible. State coi is said to have period difV"-- = 

0 whenever n is not divisible by d and d is the greatest integer with this property. A state with period one is 
said to be aperiodic (Isaacson and Madsen 1985). 

Theorem 2.1: Consider an application of the SGHC algorithm. Define hj^ ^ (k, p(Dy, Dq)) = hj^ ^ (p(Dy, 

Dq)) = hjj j) (p(Dy> Dq)), for every k = 1,2,... . Consider the transition matrix T defined by Tyq 

~^D D (P(Dy, Dq))-  If the transition matrix T is irreducible and aperiodic, then the Markov chain {^^(k)} 

has a uniform long run distribution.  Moreover, the long run distribution of {^(k)} is 7t = [1/|S| 1/|S| ... 
1/|S|]. 
Proof:   See Vaughan and Jacobson (2003b). 

Theorem 2.1 shows that if the problem generation probability function is chosen such that the Markov 
chain {*P(k)} is stationary and the associated transition matrix is symmetric, then the Markov chain {^(k)} 
has a uniform stationary distribution. The second set of sufficient conditions. Theorem 2.2, allows for the 
development of a nonstationary Markov chain. To present Theorem 2.2, a discussion of weak and strong 
ergodicity. Lemmas 2.1 and Lemma 2.2 are needed. 

For finite nonstationary Markov chains, the transition matrices T(k) that contain the probabilities of 
moving from state Dy to state Dq at outer loop iteration k, are functions of k. To define weak and strong 
ergodicity of nonstationary Markov chains, several definitions are needed. Define the one norm of a vector 

m m 

f=(fi, fi,..., fm) by II f II =SI //1 ■ Define the infinity norm of matrix T(k) by ||T(k)|| =max X!l ^71 (Atkinson 
1=1 '    j=\ 

1989). Let T(l), T(2), ... be the transition matrices for a nonstationary Markov chain with starting vector 
f\ Define f^''^W^T0+l)T(j+2) ... T(k). 

A nonstationary Markov chain is weakly ergodic if, for all j, 

lim    sup   |if^''"^^'°^|| = 0, 

where f^ and g^°' are starting vectors. A nonstationary Markov chain is strongly ergodic if there exists a 
vector q = (qi, q2, ..., qm), with || q ||=1 and qi>0, for i=l, 2, ..., m such that, for all j, 

lim sup ||f^'"^|| = 0, 

where f^**^ is a starting vector (Isaacson and Madsen 1985). The following result from Isaacson and Madsen 
(1985) is needed in the proof of Lemma 2.2 

Lemma 2.1: Let {T(k)} be a sequence of transition matrices corresponding to a nonstationary weakly 
ergodic Markov chain.   If there exists a corresponding sequence of left eigenvectors {7i(k)}, for {T(k)}, 
satisfying 

+00 

Z||7t(^)-7[(A: + l)||<^c», 

then the chain is strongly ergodic and for every j, 

lim  sup ||f^'"^-7i|| = 0, 

where 
lim 71 (k) = 71. 

k-^+x 
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Proof: See Isaacson and Madsen (1985). 

Lemma 2.2 shows that if the problem generation probability function is selected such that the 
corresponding nonstationary Markov chain {*F(k)}, *F(k) e S, k =1,2,... is weakly ergodic and the 
transition matrices T(k) are symmetric for every k, then the nonstationary Markov chain is strongly ergodic. 

Lemma 2.2: Consider an application of the SGHC algorithm. Assume that the nonstationary Markov chain 
{^(k)}, T(k) e S, k = 1,2,... is weakly ergodic and that hj, ^ (k, p(Dy, Dq)) = h^ ^ (k, p(Dq, Dy)), for 

every k. Then the nonstationary Markov chain {^(k)} is strongly ergodic and for every j, 
lim sup ||f^'"^- 7t|| = 0, 

where 71 = [1/|S| 1/|S|... 1/|S|]. 
Proof: See Vaughan and Jacobson (2003b). 

When the assumptions in Lemma 2.2 hold, then the SGHC algorithm will (as k approaches +oo) be 
executing over the solution space of each discrete optimization problem contained in the set of 
fundamentally related discrete optimization problems with equal probability. Theorem 2.2 shows that this 
result implies that for every 8 > 0, there exists an outer loop iteration such that for all future outer loop 
iterations, the SGHC algorithm is executing over the solution space of each discrete optimization problem 
in the set S with probability 1/|S| ± e. 

Theorem 2.2: Consider an application of the SGHC algorithm. Assume that the Markov chain {^(k)}, 
T(k) e S, k = 1,2,... is weakly ergodic and that /z^ ^ (k, p(Dy, Dq)) = h^ j^ (k, p(Dq, Dy)), for every k = 

1,2,... and for every q,y = 1,2,.. .,m (i.e., the corresponding transition matrix is symmetric).   Then for every 
E > 0, there exists a k(8) e 7^, such that 1/|S| - 8 < Pr{^( k) = y} < 1/|S| + 8, for all outer loop iterations k > 
k(s) and for every Dy e S, y = 1,2,.. .,m. 
Proof: See Vaughan and Jacobson (2003b). 

Theorem 2.2 establishes that the SGHC algorithm can be designed to ensure that the probability of 
visiting each problem is uniformly distributed. The following discussion illustrates this result on a set of 
fundamentally related discrete optimization problems using the traveling salesman problem. The traveling 
salesman problem (TSP) is a well-known NP-hard discrete optimization problem (Lawler et al. 1985). The 
TSP is used to illustrate various local search algorithms because it is useful for modeling a variety of real 
world problems. For example, traditional applications of the TSP include a variety of vehicle routing and 
scheduling problems. More recently, applications of the TSP have been expanded to include modem 
applications like the printing of circuit boards, x-ray crystallography, overhauling of gas turbine engines, 
and the controlling of industrial robots (Johnson and Jacobson 2002a,b). 

To formally describe the TSP (Lawler et al. 1985), define a graph to be a finite set of vertices, some 
pairs of which are joined by edges. A cycle in a graph is a set of vertices of the graph, which is such that it 
is possible to move from vertex to vertex, along edges of the graph, so that all vertices are encountered 
exactly once, finishing at the start. If a cycle contains all the vertices of the graph, it is called a 
Hamiltonian cycle (or tour). The TSP is defined as follows (Garey and Johnson 1979). 

Traveling Salesman Problem (TSP) 
Instance:   Given a set of n cities C = {ci, C2,..., Cn} and a distance matrix D that represents the cost of 
traveling between the cities in the set C. 

n-\ 
Question: Find a Hamiltonian cycle H = (c'i,c'2,.. .,c'„) that minimizes f(H) = X   ^(c'j,c'j+i) + ^(c'n, c'l). 

An instance of a TSP is a discrete optimization problem, where the solution space is the set of possible all 
Hamiltonian cycles (with each tour consisting of n cities), D. = {©1, Q2, ..., C0(n-i)!/2}. The objective function 
value for each solution C0i=(c'i, c'2, ..., c'„) e Q is the sum of the distances the tour depicts, f((Bi) = 
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n-l 

Y,  -D(c'j, c'j+i) + Z)(c'n, c'l).   The optimal objective function value represents the shortest distance 

traveled. 
The Multiple Traveling Salesman Problem (MTSP) is introduced to illustrate the application of SGHC 

algorithms. The MTSP is defined as follows. 

Multiple Traveling Salesman Problem (MTSP) 
Instance:  Given a set of n cities Ob = {cj, C2,..., Cn}, a set of m subsets of Ob, O = {Ci, C2,.--, Cm}, and a 
distance matrix D that represents the cost of traveling between the cities in the set Ob. 
Question:    Find a Hamiltonian cycle H = (c'l, c'2,..., c'|Q |) where there exists a Cy, y = l,2,...,m such 

«-i 
that c'j e Cy, for every j = 1, 2, ..., n, and f(H) = J^   ^(c'j, c'j+i) + D(c'n, c'l) is minimized. 

Note that each of the sets Cy e O represents an instance of the TSP, Dy. Since the TSP can be 
formulated as a discrete optimization problem, then the MTSP problem can be represented by set of 
discrete optimization problems S = {Di, D2, ..., Dm}. The set S = {Di, D2,..., Dm} is a set of fundamentally 
related discrete optimization problems. To see this, note that each discrete optimization problem Dy e S, y 
= l,2,...,m is fully defined by CyC 06 = {ci, C2, ..., Cn}. Therefore, Cy is the fundamental relation set of 
discrete optimization problem Dy. 

The following computational results illustrate how a MTSP can be addressed with SGHC algorithms. 
For comparison purposes, GHC algorithms are also applied to the individual members in the set of 
fundamentally related discrete optimization problems. These computational results suggest that 
optimal/near optimal solutions can be reached in less total iterations using a SGHC algorithm. 

To develop a MTSP, a set consisting of 20 cities was generated by randomly locating each city on a 
1000 by 1000 unit grid. Four TSPs of size 18 were generated by randomly selecting 18 of the 20 cities for 
each traveling salesman problem. In the case where an identical set of cities was generated for two or more 
of the problems, a completely new set of discrete optimization problems was generated, resulting in four 
distinct randomly generated TSPs. 

The four randomly generated TSPs are arbitrarily labeled Di, D2, D3, and D4. The detachment metric 
p(Dy, Dq), between the TSPs, was calculated for all y,q = 1,2,3,4. The distance matrix and distance 
diagram are depicted in Figure 2.1. 

Figure 2.1: Distance Matrix and Distance Diagram 

Di D2 D3 D4 

Di 0 4 4 4 

D2 4 0 4 4 

D3 4 4 0 2 

D4 4 4 2 0 

Computational results with Monte Carlo search, pure local search, and simulated armealing using 
SGHC algorithms are reported. For comparison purposes, computational results with Monte Carlo search, 
pure local search, and simulated annealing using GHC algorithms are also reported. The 2-Opt 
neighborhood fiinction was used for all executions of the SGHC and GHC algorithms. For the SGHC 
algorithms, the problem generation probability function is defined as 

h^ o (k, p(Dy, Dq)) = [l/p(Dy, Dq)] / [ i   (l/p(Dy, DO)], y ^ q 

13 



and 

V„ (k,p(D„Dy)) = l- S 
q*y 

[l/(p(D„Dq)]/[E   (l/p(D„D0)] = O, 
(=1 
i*y 

for every y,q = 1,2,3,4, y ^^^ q for every k = 1,2,.. .,K. 
This problem generation probability function is defined such that the associated transition matrix is 

symmetric and the Markov chain {*F(k)} is stationary. Therefore, by Theorems 2.1 and 2.2, the Markov 
chain {^(k)} has a uniform stationary distribution, hence as k approaches infinity, the SGHC algorithm is 
executing over the solution space of each discrete optimization problem in S = {Di, D2,..., Dm} with 
probability 1/m = 1/|S| = 1/4. Moreover, this problem generation function guarantees the discrete 
optimization problem over which the SGHC algorithm is executing changes at every outer loop iteration k 
(i.e., »P(k) 9i T(k-l), for all k = 1,2,...). 

Executions with different values of K and N = N(k), k = 1,2,...,K are reported. To compare the 
performance of applying a SGHC algorithm versus applying a GHC algorithm, the inner and outer loop 
bounds of the SGHC algorithm were doubled. Therefore, the total number of iterations that the SGHC 
algorithm executes is equal to the total number of iterations executed using the GHC algorithm for the four 
individual problems. Let R e Z'^ represent the total number of replications executed for each SGHC and 
GHC algorithm formulation. For each replication, a different randomly generated initial tour was used. 
The means, |u,, standard deviations, a, and the minimum and maximum distances, were computed from the 
optimal tour distances across these R replications. The value y in Tables 2.1 to 2.6 represents the number 
of replications for which the algorithms find the minimum distance tour. For simulated annealing, tk is 
updated by multiplying the previous temperature parameter by the increment multiplier p = .90 (i.e., tk = 
Ptk-i), with initial temperature parameter to = 2000. 

Table 2.1: GHC Algorithm Results: Pure Local Search 
Outer and Inner Loop Bounds y/R ^ CT Minimum Maximum 

K=100, M=100 4/30 3864.3 36.9726 3805.4 3916.0 

K=200, M=100 3/30 3863.4 32.7691 3805.4 3907.3 

K=300, M=75 1/30 3876.6 36.9549 3805.4 3953.7 

K=400, M=75 1/30 3885.3 42.1893 3805.4 3973.4 

K=400, M=50 2/30 3867.9 37.7520 3805.4 3916.0 

K=800, M=50 1/15 3872.8 35.2469 3805.4 3916.0 

Table 2.2: SGHC Al gorithm Results: Pure Local Search 
Outer and Inner Loop Bounds y/R 1^ a Minimum Maximum 

K=100, M=100 10/30 3819.4 13.2943 3805.4 3831.8 

K=200, M=100 23/30 3808.9 9.0535 3805.4 3831.6 

K=300, M=75 23/30 3808.9 9.0535 3805.4 3831.6 

K=400, M=75 24/30 3807.2 6.6434 3805.4 3831.6 

K=400, M=50 9/30 3818.5 13.3165 3805.4 3831.6 

K=800, M=50 12/15 3810.7 10.8417 3805.4 3831.6 

The results in Table 2.1 suggest that when the number of outer loop iterations for a pure local search 
GHC algorithm is increased from 100 to 200, performance of the algorithm shows no improvement. 
However, Table 2.2 suggests that the performance of a pure local search SGHC algorithm improves 
significantly (as measured by |u) when the number of outer loop iterations is increased from 100 to 200. 
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Table 2.3: GHC Algorithm Results: Simulated Annealing 
Outer and Inner Loop Bounds to y/R 1^ CT Minimum Maximum 

K=100, M=100 3000 1/30 3854.1 41.4192 3805.4 3953.7 

K=200, M=100 3000 1/30 3861.2 35.7662 3805.4 3916.0 

K=300, M=75 2000 2/30 3861.5 39.7074 3805.4 3973.4 

K=400, M=75 2000 5/30 3855.9 35.3872 3805.4 3907.5 

K=400, M=50 2000 3/30 3868.8 39.4863 3805.4 3916.0 

K=800, M=50 2000 1/15 3885.9 29.7020 3805.4 3916.0 

Table 2.4: SGHC Algorithm Results: Simulated Annealing 
Outer and Inner Loop Bounds To y/R H a Minimum Maximum 

K=100, M=100 3000 16/30 3814.1 12.5549 3805.4 3831.6 

K=200, M=100 3000 19/30 3808.0 7.9899 3805.4 3831.6 

K=300, M=75 2000 20/30 3808.9 9.0535 3805.4 3831.6 

K=400, M=75 2000 23/30 3808.9 9.0535 3805.4 3831.6 

K=400, M=50 2000 7/30 3831.6 13.1248 3805.4 3831.6 

K=800, M=50 2000 1/15 3813.6 12.5352 3805.4 3831.6 

Table 2.5: GHC Algorithm Resul ts: Monte Carlo Search 
Outer and Iimer Loop Bounds y/R ^ a Minimum Maximum 

K=100, M=100 1/30 6390.0 294.6998 5634.9 6805.9 

K=200, M=100 1/30 6195.6 239.7325 5575.7 6656.3 

K=300, M=75 1/30 6111.7 293.6761 5293.0 6613.9 

K=400, M=75 1/30 6099.6 292.5790 5310.2 6488.3 

K=400, M=50 1/30 6122.6 287.3693 5291.7 6575.7 

K=800, M=50 1/15 6007.1 231.746 5479.1 6328.1 

Table 2.6: SGHC Algorithm Results: Monte Carlo Searcl li 
Outer and Iimer Loop Bounds y/R 1^ a Minimum Maximum 

K=100, M=100 1/30 6758.2 202.9184 5793.3 6758.2 

K=200, M=100 1/30 6109.3 301.5243 5243.7 6611.5 

K=300, M=75 1/30 6214.6 204.3092 5727.6 6575.3 

K=400, M=75 1/30 6054.3 232.6718 5614.9 6462.8 

K=400, M=50 1/30 6265.8 197.6956 5877.3 6659.3 

K=800, M=50 1/15 5954.7 301.7151 5299.6 6382.3 

The results in Tables 2.5 and 2.6 suggest that there is little difference in performance between Monte 
Carlo search GHC algorithms and Monte Carlo search SGHC algorithms. Note that this result occurs since 
Monte Carlo search accepts neighboring solutions independent of their objective fimction value. 
Therefore, when movement between discrete optimization problems occurs there is no exchange of 
common information between the discrete optimization problems. Overall, the results in Tables 2.1 
through 2.4 suggest that the SGHC algorithms outperform the GHC algorithms. The minimum distance 
found over the R replications using SGHC algorithms is significantly smaller than the minimum distance 
found over the R replications using GHC algorithms for both the simulated annealing and pure local search 
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algorithms.   Additionally, the standard deviation of the optimal values over the R replications is smaller 
using the SGHC algorithms. 

Figures 2.2 through 2.4 depict plots comparing the performance of the SGHC algorithms and the GHC 
algorithms. To obtain this data, fifteen replications of each SGHC algorithm and GHC algorithm 
formulation were executed. For each replication, a different randomly generated initial solution was used. 
The mean of the optimal distances across the fifteen replications for the GHC algorithm are plotted with a 
solid blue line. The standard deviations of the optimal distances for the GHC algorithm across the fifteen 
replications are plotted with a dashed blue line. The means of the optimal distances across the fifteen 
replications for the SGHC algorithm are plotted with a solid red line. The standard deviations of the 
optimal distances for the SGHC algorithm across the fifteen replications are plotted with a dashed red line. 
The number of outer loop iterations executed was 800 and the number of inner loop iterations executed was 
50 for every formulation. For simulated annealing, tk is updated by multiplying the previous temperature 
parameter by the increment multiplier P=.90 with initial temperature parameter to=2,000. 

Figure 2.2: Pure Local Search 
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Figure 2.3: Simulated Annealing 
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Figure 2.4: Monte Carlo Search 

Monte Carlo Search 
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Figures 2.2 and 2.3 suggest that the SGHC algorithms outperform the GHC algorithms, as measured by 
|u.. The minimum distance found over the fifteen replications using SGHC algorithms is significantly 
smaller after 2500 iterations than the minimum distance found over the fifteen replications using GHC 
algorithms for both the simulated annealing and pure local search algorithms. Since the SGHC algorithms 
periodically move between discrete optimization problems they do not get trapped at local minima as 
frequently as GHC algorithms. Moreover, the standard deviation band of the optimal values over the 
fifteen replications is smaller using SGHC algorithms. Figure 2.4 suggests that there is no significant 
difference in the performance of Monte Carlo Search SGHC and GHC algorithms. As noted previously, 
this result occurs since Monte Carlo search accepts neighboring solutions independent of their objective 
fimction value. Therefore, when movement between discrete optimization problems occurs there is no 
exchange of common information between the discrete optimization problems. 

Figures 2.5 through 2.7 depict plots comparing the performance of the SGHC algorithms and the GHC 
algorithms. To obtain this data, thirty replications of each SGHC algorithm and GHC algorithm 
formulation were executed. For each replication, a different randomly generated initial solution was used. 
The mean of the optimal distances across the thirty replications for the GHC algorithm are plotted with a 
solid blue line. The standard deviations of the optimal distances for the GHC algorithm across the thirty 
replications are plotted with a dashed blue line. The means of the optimal distances across the thirty 
replications for the SGHC algorithm are plotted with a solid red line. The standard deviations of the 
optimal distances for the SGHC algorithm across the thirty replications are plotted with a dashed red line. 
The number of outer loop iterations executed was 400 and the number of inner loop iterations executed was 
75 for every formulation. For simulated armealing, tk is updated by multiplying the previous temperature 
parameter by the increment multiplier p = .90 with initial temperature parameter to = 2,000. 
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Figure 2.5: Pure Local Search 

Pure Local Search 

GHC 
GHC stdev 
SGHC 
SGHC stdev 

Figure 2.6: Simulated Annealing 

Simulated Annealing 

3900 

GHC 
GHC stdev 
SGHC 
SGHC stdev 

18 



Figure 2.7: Monte Carlo Search 
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Figures 2.5 and 2.6 suggest that the SGHC algorithms outperform the GHC algorithms, as measured by 
10,. The minimum distance found over the thirty replications using SGHC algorithms is significantly smaller 
after 2500 iterations than the minimum distance found over the thirty replications using GHC algorithms for 
both the simulated aimealing and pure local search algorithms. Since the SGHC algorithms periodically 
move between discrete optimization problems they do not get trapped at local minima as frequently as GHC 
algorithms. Moreover, the standard deviation band of the optimal values over the thirty replications is 
smaller using SGHC algorithms. Figure 2.7 suggests that there is no significant difference in the 
performance of Monte Carlo search SGHC and GHC algorithms. As before, this result occurs since Monte 
Carlo search accepts neighboring solutions independent of their objective function value. Therefore, when 
movement between discrete optimization problems occurs there is no exchange of common information 
between the discrete optimization problems. 

The SGHC algorithm is a new approach for addressing a set of fundamentally related discrete 
optimization problems that can be more efficient than the traditional approach of addressing each discrete 
optimization problem in the set S individually with a local search algorithm. For example, SGHC 
algorithms allow practitioners to make a single algorithm run over a set of fundamentally related discrete 
optimization problems. Moreover, the computational results presented suggest that a SGHC algorithm can 
outperform the GHC algorithm. The development of the SGHC algorithm and the mathematical results in 
this paper make it possible for the SGHC algorithm to be adapted and used to approach a variety of real- 
world problems. 

3.        P-Acceptable Solution Performance Measures 
An important breakthrough has been the introduction and development of P-acceptable solution analysis 
for GHC algorithms. To obtain these new results, several important research development milestones had 
to be attained. All these results are reported in Orosz and Jacobson (2002a,b). 

The current literature on asymptotic convergence properties and finite-time performance measures 
focuses primarily on reaching a global minimum. However, in practice, solutions that are close enough 
to a global minimum are often acceptable. Define solutions that have objective function value no greater 
than P as P-acceptable solutions, where y? denotes the maximum acceptable objective function value 

19 



(necessarily larger than the global minimum objective function value). This paper analyzes the finite- 
time behavior of GHC algorithms in reaching |3-acceptable solutions. 

To illustrate how the P-acceptable solution framework can be applied, a variation of the SA 
algorithm that uses a fixed cooling schedule term static simulated annealing (S^A) is used. Desai (1999) 
and Cohn and Fielding (1999) present results regarding the finite-time behavior of the S^A algorithm that 
suggest the probability of visiting a globally optimal solution is maximized by keeping the temperature 
fixed rather than allowing the temperature to approach zero. Fielding (2000) presents an insightful 
empirical study that suggests that there is an optimal fixed temperature for S^A for different problems. A 
disadvantage of maintaining a fixed temperature is that the necessary convergence condition (the cooling 
schedule must approach zero as the number of iterations approaches infinity, e.g., see Hajek 1988) for 
SA, is violated. During an execution of S^A, the algorithm may be in a neighborhood of a global 
optimum, yet not visit this global optimum since there exists a positive probability of not visiting it (i.e., 
hill climbing). An advantage of S^A is that there is a nondecreasing positive probability of escaping a 
local optimum throughout the algorithm's execution. 

This research looks at finite-time performance measures for identifying y9-acceptable solutions. In 
particular, the paper derives expression for the expected number of iterations to visit the set of fi- 
acceptable solutions, and uses these expressions to obtain upper and lower bounds for this expectation 
that can be estimated using finite length runs. These bound estimators are then computed from empirical 
data generated fi-om independent replications of (moderately short) S^A algorithm runs. The resulting 
estimators and the associated estimation procedure provide information that can be used by practitioners 
to evaluate how long an S^A algorithm should be run (as measured by the expected number of iterations) 
to be able to visit the set of yS-acceptable solutions for different values of fi. Note that the estimation 
procedure and the need for multiple replications, as in its current form, suggest that it may not be 
practical to be used for very large problem instances. 

The objective function and the neighborhood function for a discrete optimization problem allows the 
solution space, Q, to be decomposed into two mutually exclusive and exhaustive sets: 

- the set of globally optimal solutions, G = {a* e Q.:f{of) <f{co) for all a> e Q.}, 
- the set of all other solutions, G^= {COG Q.:f{co*) <f{o}),co* e 0} where G u 0^^= Q. 

In many applications, the goal when addressing a discrete optimization problem is to identify a globally 
optimal solution co* e G. However, from a practical point of view, solutions that are close enough to a 
globally optimal solution (where close enough is measured in terms of the objective function value) for a 
discrete optimization problem may be acceptable. To describe such solutions, define the set of fi- 
acceptable solutions 

T>^={coea:Aw)<p},pe9i.. (1) 

Note that ii P < f{(o*), co* G G, then Dp = 0.  Moreover, ii P > max^ g n j{a)), then Dp = Q.  Lastly, 
lim    Dp = G, hence G is the upper (right) limit of Dp as p approachesy(<«*) from above. 

Simulated annealing (SA) is a particular GHC algorithm, with hill climbing random variable, 
Rkico,co') = -T(k)*ln(l-Uk), co'eT]{o)), where the {Uk} are IID U(0,1) random variables and T(k), 
k=l,2,...,K, are the temperate parameters that define the cooling schedule. Therefore, iffico) -fico(i)) > 
0, then co(i) is accepted as the current solution with probability e"'"'"^ ~ <(»)]/T(k) jj^^ temperature 
parameters are generally set such that they gradually decrease to zero. This means that as k approaches 
infinity, the SA algorithm behaves similar to pure local search algorithm, hence it will eventually 
terminate at either a global or a local optimum. 

Static simulated aimealing (S^A) is a particular type of SA algorithm, where the temperature is held 
fixed (or static) during the entire algorithm execution. IiJ{co) -f{co(i)) > 0, then co{i) is accepted as the 
current solution with probability e'^*^"'^ " *^"^''^, where T = T(k), k = 1,2,...,K is held constant at each 
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iteration. The S^A and SA pseudo-code are identical, except that only a single temperature T is required 
for S^A throughout the entire algorithm execution. 

The one-step fi-acceptable probability is now introduced and described as a finite-time performance 
measure for GHC algorithms.   Define A to be a GHC algorithm applied to an instance of a discrete 

K 

optimization problem, where h = X   N(k) represents the total number of algorithm iterations executed. 

Assume that for algorithm A, Rila)(i),a>) > 0, a)(i) e Q.,(o e r]{co(i)), for all iterations i = 1,2,.. .,h, and for 
all outer loop iterations k = 1,2,...,K. At each iteration h, define the event D(h,y5) on the probability 
space (S, 5, P), termed the set oi^-acceptable solutions, as 

T)/^(^fi) = 'D(^,p)={{(o(l),co(2),...,co(h)): co(i) e Q,/= 1,2,...,h,y(co(^z:)) <y9for some f= 1,2,...,h} 
={{(Jo(l),co(2),...,co(h)): co(i) e Q.,i= l,2,...,h.,a)(i) e D^forsome/= 1,2,...,h}, (2) 

where fi is an objective function value threshold. Therefore, the complementary event is 

D/(h,y5) = BXh,P) = {(w(l),co(2),-,o^))- co(i) enj= \,2,...,hAco(i))> fifor all i = 1,2,...,h} 
= {(co(l),(o(2),...,co(h)y. co(i) e Q, f = l,2,...,h, co(i) € D^ for all / = l,2,...,h}. (3) 

The event D(h,y9) defines sequences of h solutions that result from the execution of algorithm A over 
h iterations, where one or more solutions have objective function values less than or equal to yff. The 
definition of D(h,y5) implies that D(i,y9) c D(i+l,y5), for all iterations i = l,2,...,h, hence {D(h,y?)} is a 
telescoping, non-decreasing sequence of events in h. From (2) and (3), the one-step ^-acceptable 
probability is defined as 

T(j,fi) = P{D(j,y9) I D-'CJ-l,^)} =V{{oj(l)M2) (oO)): (o(i) e^J= 1,2,...,j, f{co(i)) > fi for all / = 
\,2,...,j-l,fico6))<P}/'P{m-m} (4) 

The one-step y&-acceptable probability at iteration j provides a finite-time performance measure for 
the effectiveness of a GHC algorithm, namely the ability of the algorithm to visit an element of the 
solution space with objective function value less than or equal to fi at iteration j given that it has not 
already visited such a solution over the first j-1 iterations. 

The one-step y9-acceptable probability can be used to obtain a closed form expression for (2). Lemma 
3.1 captures this relationship. 

Lemma 3.1: Consider a GHC algorithm execution with initial solution generated such that V{D''(0,fi)} = 

1. ThenP{D(h,;ff)} = l-ri   [l-r(j,>5)] 

Proof. See Orosz and Jacobson (2002a). 

The one-step y9-acceptable probability can be used to express the expected number of iterations to reach 
the ^-acceptable set for the first time. Li particular, define the random variable xp to represent the 
minimum number of iterations needed to reach an element in the set of ;5-acceptable solutions, 

T^ = min{j>l:f(coG))<ye}. (5) 

The relationship between x^ and the one-step ;5-acceptable probability is described in Lemma 3.2. 

Lemma 3.2: Consider a GHC algorithm execution with initial solution generated such that 
?{D\0,fi)}=l. Then 

(a) P{T^>h}=ri   [l-r(i,/3)]=F{DXh,fl)} 

+00 

(b) P{T^<+cx)} = l-n   [\-r(],P)-\ 
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(c)        P{T^ = h}=r(h,y9)n   [l-rdM- 

Proof: See Orosz and Jacobson (2002a). 

Theorem 3.1 provides an expression for the conditional expectation of t^. 

THEOREM 3.1: Consider a GHC algorithm execution with initial solution generated such that 
P{D'(0,yS)} = 1. At iteration h = 1,2,..., if P{T^ < h} > 0 for some ^ >/(«*), ^* e G, then 

E[x^|T^<h] = h-i:   [1-fl   [l-r(j,;5)]]/[l-n   [l-r(j,m 
r=l J=} 7=1 

Proof: See Orosz and Jacobson (2002a). 

The expression in Theorem 3.1 clearly shows that E[T^ | T^ < h] is no greater than h.   Theorem 3.2 
provides an expression for the conditional variance of T^. 

Theorem 3.2: Consider a GHC algorithm execution with initial solution generated such that 'P{D\0,fi)} 
= 1. At iteration h = 1,2,..., if P{T^ < h} > 0 for some /3>f{co*), co* e G, then 

Var[T^|T;,<h] = (h+l)^-i   [(2T+l)(l-n   [l-r(j,mni-f[   [l-r0",y5)]]] 
r=0 j=l j=l 

-[h-ELl-fl   [i-r(i,y5)]]/[l-fl   n-r(iM]f 
T=l J=l J=i 

Proof: See Orosz and Jacobson (2002a). 

Theorem 3.3 provides expressions for the conditional expectation of x^ given that a larger or smaller 
y5 value has been reached. 

Theorem 3.3: Consider a GHC algorithm execution with initial solution generated such that P{D'^(0,yS2)} 
= 1. At iteration h = 1,2,..., assume that P{T^ < h}>0 for some fii > f{co*) and /^z >f{a>*), co* e G, with 
P\<P2- Then at iteration h, 

(a) E[T^i|T^2<h] = i   [Tr(t,A)n   [l-rO^A)] / [1-11    [l-r^y^a)]]] 
T=l M i=i 

+00 h 

+ E    [TP{T^, = T,T^2<h}/[l-n    [l-ra,y»2)]]] 

(b) E[x^2|xAi^h] = (h+l)-i   [P{T^2<T,t^i<h}/[l-n    [l-r(iA)]]] 
r=0 j=\ 

Proof: See Orosz and Jacobson (2002a). 

The expression for E[T^I | T^2 ^ h], P\ <P2 in Theorem 3.3 provide measures for assessing the finite- 
time performance of a GHC algorithm. Note that one difficulty with these expressions is that they 
contain infinite summations, hence are impractical to compute. 

Theorem 3.4 provides expressions for the conditional variance of T^ given that a larger or smaller y9 
value has been reached. 

Theorem 3.4: Consider a GHC algorithm execution with initial solution generated such that P{D''(0, P2)} 
= 1. At iteration h = 1,2,..., assume that P{T^<h} > 0 for some fii >f{a>*) and ^2 ^fico*), (o* e G, withySi 
< ^2- Then at iteration h, 

(a)        Var[T^,|T^2<h]=i:   [T'r(x,A) fl   U-riJA)]/^-!!    U-riiAM 
r=l y=l j=\ 

+ Z    [t'P{T/ii=T,x^2<h}/[l-n    U-rQAM 
r=h+\ j=\ 
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-[E    ["(T,A)][1   [l-r(JA)]/[l-n    n-rQ,M]] 

+ E    [TP{T^i = T,T^<h}/[l-n    [l-ray^2)]]]f 

(b)        Var[x^ I x^i < h] = (h+l)2 - i   [(2T+1) P{T^ < T, T^I < h} / [1 -fl    [l-rG,>»i)]]] 
T=0 >1 

-[(h+l)-i     [P{T^2<T,T^i<h}/[l-n    [l-r(j,A)]]]f 
r=0 7=1 

Proof: See Orosz and Jacobson (2002a). 

These results describe how the one-step y^-acceptable probability and the random variable xp can be 
used to obtain finite-time performance measures for GHC algorithms. The main difficulty with these 
measures is that they are difficult to compute or estimate. The following description and results show 
how these measures can be computed for a specific GHC algorithm, the S^A algorithm. Similar results 
for cyclical simulation annealing (CSA) are reported in Orosz and Jacobson (2002b). 

To obtain a run length analysis of S^A, properties of the S^A algorithms can be exploited to obtain 
upper and lower bounds for E[T^]. TO obtain these bounds for a GHC algorithm, the total number of 
iterations executed can be decomposed into a set of cycles, each of length h, where the cycle number of 
iteration x is denoted by 

jh(x)=rx/hi, (6) 

the ceiling function for x / h (i.e., the smallest integer greater than or equal to x / h). To obtain the cycle 
in which the algorithm visits any element in the set of y9-acceptable solutions for the first time, define the 
random variable 

Jh(x^) = min{jh(x) > 1 : jh(x)h > x^, x = 1,2,...} = fxp / h1. (7) 

Figure 3.1 depicts the relationship between jh(x) and x, where jh(x) = j for all values of x between (j-l)h+l 
and jh. Therefore, if the set of y9-acceptable solutions is visited for the first time between iterations (jh(T)- 
l)h+l and jh(x)h, then Jh(x^) = jh(T;). 

tf=x 

^< 'S-\-^ 
0 h 2h (jh(T)-l)h   jh(x)h 

Figure 3.1: Relationship between jh(x) and xp 

Lemma 3.3 summarizes relationships that exist between the events {x^ = x} and {i\ixp) = jh(t)}. 

Lemma 3.3: Consider a GHC algorithm execution with initial solution generated such that V{\f(f),P)} = 
1. Suppose that the algorithm is executed for x > 0 iterations. Then for cycle length 0 < h < x, 

(a) P{x^ = x}<P{Jh(x^)=jh(x)}, 
(b) P{Jh(x^)>jh(t)}=P{T^>jh(T)h}, 
(c) P{Jh(x^) > jh(x)} < P{x^ > jh(x)h - j} for all j > 0, 
(d) P{Jh(x^) > jh(x)} > P{x^ > jh(T)h + j} for all j > 0, 
(e) P{Jh(x^) = jh(x)} = P{x^ < jh(x)h} - P{x^ < ah(T)-l)h}, 
(f) P{x^>Mx)h} <P{x^>x} <P{x^>Gh(T)-l)h}, 

Proof:  See Orosz and Jacobson (2002a). 

Lemma 3.4 obtains an expression for the expectation of \{xp) for GHC algorithms in terms of the one- 
step yS-acceptable probability. 
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Lemma 3.4: Consider a GHC algorithm execution with initial solution generated such that P{D''(0,j5)} = 
1. Then 

+CC jh 

E[Jh(x^)]= E   m   [l-r(i,yg)]]. 
7=0        !=1 

Proof: See Orosz and Jacobson (2002a). 

Theorem 3.5 uses the random variable Jh(t^) to obtain upper and lower bounds for E[Ty?], the expected 
number of iterations to visit the set of j5-acceptable solutions for the first time. 

Theorem 3.5: Consider a GHC algorithm execution with initial solution generated such that V{If{0,P)) 
= 1. Then 

1 + h [E[Jh(T^)] -1] < E[T^] < 1 + h [E[Jh(T^)]] (8) 
Proof: See Orosz and Jacobson (2002a). 

Theorem 3.5 provides upper and lower bounds for ^\%p\ that are functions of h and [E[Jh(T^)]. The 
problem in applying these bounds is that they contain infinite summations, hence are not easily 
computable. This problem is difficult to overcome for GHC algorithms in general. However, the 
cyclical nature of S^A can be exploited to circumvent this problem. In particular, if the random variable 
Jh(T^) can be modeled as a geometric distribution with parameter P{T^ < h}, then E[Jh(T^)] = \fP{ip ^ h}, 
and the bounds in Theorem 3.5 simplify to 

1 + h [P{T^ > h} / P{T^ < h}] < EM < 1 + h [1 / P{x^ < h}]. 

From Lemma 3.2, P{T^ < h} can be estimated using a finite length execution. Therefore, E[Jh(T^)] for S^A 
can be estimated using information obtained from replicating each algorithm's performance over a single 
cycle (i.e., over the first h iterations). To see this, for cycle m, the probability that the algorithm visits the 
set of yS-acceptable solutions for the first time in cycle m is 

P {Jh(V = m} = P {(m-l)h +1 < T^ < mh}. (9) 

Lemma 3.5 uses this expression to show that if the one-step yS-acceptable probability is constant over all 
iterations (i.e., x{\,P) = r for all i=l,2,...), then Jh(i:^) is a geometric random variable with parameter P{T^ 

< h} = 1- {\-rf. 

Lemma 3.5: Consider a S^A algorithm execution with initial solution generated such that P{0*^(0,y9)} = 1 
and cycle length h > 0.   If r(i,y9) = r for i = 1,2, ..., then Jh(x^) is a geometric random variable with 
parameter P{T^ < h}= 1- (l-r)*". 
Proof:  See Orosz and Jacobson (2002a). 

For S^A algorithms, since the cooling schedule is fixed at all iterations, then the probability of 
accepting up hill moves is independent of the iteration number. Therefore, though it is likely to be very 
difficult to formally prove this result, it may be reasonable to assume that the r(i,yS) values are constant 
for all i = 1,2,..., hence the result in Lemma 3.5 applies. Theorem 3.6 provides an upper and lower 
bound on the expected number of iterations to reach the set of ;5-acceptable solutions, under this 
assumption. 

Theorem 3.6: Consider a S^A algorithm execution with initial solution generated such that P{D'^(0,;5)} = 
1. If i\iTp) is a geometric random variable with parameter P {T^ < h}, then 

1 + h [P{T^ > h}/P{T^< h}] < E[T^] < 1 + h/P{T^<h}. 

Proof: See Orosz and Jacobson (2002a). 

Theorem 3.7: Consider a S^A algorithm execution with initial solution generated such that 
P{D''(0,yff)}=l. If Jh(T^) is a geometric random variable with parameter P{T^ < h}, then 

E[Tp|Tp<h]P{Tp<h} + [l+h/P{tp<h}]P{Xp>h}<E[T^] 
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< E[TpI Tp<h] P{Tp<h} + [h + 1 + h/P{Tp<h}] P{Tp>h} 
and 

VarM<h'([P{T^>h}+l]/P{x^<h}')-(E[Tp|Tp<h]P{Tp<h} + [l+h/P{Tp<h}]P{Tp>h})l 
Proof: See Orosz and Jacobson (2002a). 

Theorem 3.8 shows that the upper and lower bounds for E[Tp] presented in Theorem 3.7 are tighter 
than the upper and lower bounds for E[Tp] presented in Theorem 3.6. 

Theorem 3.8: Consider a S^A algorithm execution with initial solution generated such that P{0*^(0,y?)} = 
1. If Jh(T^) is a geometric random variable with parameter P{T^ < h}, then 

E[Tp I xp < h] P{xp < h} + [h + 1 + h / P{xp < h}] P{tp > h} < 1 + h / P{T^ < h} 
and 

E[xp|xp<h]P{xp<h} + [l+h/P{xp<h}]P{xp>h}>l+h[P{xp>h}/P{x^<h}]. 

Proof: See Orosz and Jacobson (2002a). 

Theorem 3.8 shows that the upper and lower bounds for E[xp] in Theorem 3.7 are tighter than the 
bounds given in Theorem 3.6. Therefore, under the assumption that Jh(x^) is a geometric random variable 
with parameter P{x^ < h}, the bounds in Theorem 3.7 should be used. Note that under this assumption, 
these results can only be applied to certain GHC algorithms, such as S^A. The following description 
exploits these results for S^A algorithms to show how the bounds in Theorem 3.7 can be computed. 

Computational results with the traveling salesman problem to illustrate how the upper and lower 
bounds for E[x^] in Theorem 3.7 can be computed. The traveling salesman (optimization) problem (TSP) 
is a well-studied NP-hard discrete optimization problem (Lawler et al. 1985). The diversity of 
applications for the TSP makes it a frequent choice for testing and evaluating the efficiency and 
effectiveness of algorithms and heuristics for intractable discrete optimization problems. Traditional 
applications of the TSP can be found in numerous domains, including vehicle routing and scheduling 
problems. More recently, it has been applied to the manipulation of robotics (Balaguer et al. 2000), the 
cutting of industrial components (Foerster and Wascher 1998), and circuit board design (Kobayashi et al. 
1999). A search and rescue military application can also be modeled with the traveling salesman 
problem (Henderson, Vaughan, and Jacobson 2003). 

To apply a local search algorithm to an instance of the TSP, a neighborhood function must be 
defined. There are numerous neighborhood functions that have been devised for the TSP. One such 
neighborhood function is the 4-change method. The 4-change method moves between solutions by the 
exchange of four edges. There are several methods that accomplish the 4-change neighborhood function. 
One such method is the city-exchange method. The city exchange method defines a neighbor of a given 
cycle by exchanging two cities in the cycle. For example, for a set of seven cities C = {ci, Ci, C3, C4, C5, 
Ce, C7} with solution space Q = {coi, CO2, ..., CO360}, if the current solution is co = (c'l, c'2, c'3, c'4, c'5, c'e, 
c'y), then by exchanging cities c'l and c'5, a city exchange neighboring solution is co' = (c'5, c'2, c'3, c'4, 
c'l, c'e, c'v), with four edges exchanged. 

Another commonly used neighborhood function for the TSP is the 2-Opt neighborhood function 
(Croes 1958). The 2-Opt neighborhood function moves from one solution to another solution by the 
exchange of two edges. For example, consider the finite set of seven cities C = {ci, C2, C3, C4, C5, Ce, Cv}, 
and the corresponding solution space Q = {oi, 0)2, ..., co36o}. If the current solution is co = (c'l, c'2, c'3, 
c'4, c'5, c'e, c'7), then one possible neighboring solution is co' = (c'l, c'5, c'4, c'3, c'2, c'e, c'7), which is 
obtained by reversing the sequence of cities (c'2, c'3, c'4, c'5). The 2-Opt neighborhood function is a 
specific version of a more general neighborhood function termed ^-Opt (Helsgaun 2000), where in each 
move fi^om one solution to another solution, X edges are exchanged. The X,-opt neighborhood function is 
based on the concept that a cycle is considered ^-optimal if it is impossible to obtain a lower objective 
function value by the exchange of any X edges.  From this definition, as 1. increases, the resulting local 
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search algorithm is more Ukely to find an optimal solution. Unfortunately, the number of operations to 
test all ^.-exchanges also increases as the number of cities increases. Therefore, local search algorithms 
that use the X,-C)pt neighborhood function typically restrict the value for X to be two or three (Helsgaun 
2000). 

The Lin-Kemighan neighborhood function (Lin and Kergnighan 1973) operates by determining the X 
value in the A,-opt neighborhood function that achieves the best compromise between algorithm run-time 
and quality of solution. At each iteration of the algorithm, a series of tests is performed to determine the 
optimal number of ^.-exchanges that should be considered. This method is commonly considered the 
most effective neighborhood function as well as the most difficult to design. Note that since the purpose 
of the computational experiments is not to determine an optimal neighborhood function for local search 
algorithms applied to the TSP, but rather, to illustrate the upper and lower bounds derived in Section 4, 
only the city exchange neighborhood function is used. 

The S^A algorithm was applied to a randomly generated one hundred city instance of the TSP. The 
distance matrix D(Ci,Cj) between each pair of cities Ci,Cj e C was generated by randomly placing the cities 
on a 10 X 10 Cartesian grid and using a two-dimensional array to store the (X,Y) coordinates of each city 
(each coordinate was independently generated uniform [0,10]). The distance between cities was then 
computed and placed in the distance matrix. Note that by design, the distance matrix is symmetric (i.e., 
D(Ci,Cj) = D(Cj,Ci) for each pair of cities Ci,Cj G C). 

The S^A algorithm was applied with six different (fixed) temperatures (T = 0, 1, 5, 20, 50, 100) and 
four different cycle lengths (h = 500, 2000, 5000, and 2,000,000), resulting in a total of twenty-four 
different parameter settings (hence algorithm executions). At each iteration of the S^A algorithm, a 
neighbor of the current cycle was generated using the city exchange neighborhood function, where the 
two cities selected for exchange were uniformly generated across each of the cities (note that 
experiments using the 2-opt neighborhood function were also performed, but the results obtained were 
inferior, as measured by the values for E[Tp], to those obtained using the city exchange neighborhood). 
For each S^A algorithm execution, an initial cycle was randomly selected among all possible Hamiltonian 
cycles. Based on all the S^A algorithm executions and replications, the smallest Hamiltonian cycle 
obtained had total distance 99.4, which serves as an upper bound on the optimal Hamiltonian cycle 
distance. One thousand replications were executed for each of the parameter settings to estimate the one- 
step yS-acceptable probability at each iteration. For each of these replications, the same problem instance 
and parameter settings were used, with a different randomly generated initial cycle. The average initial 
solution over the 24,000 runs performed (twenty-four parameter settings with one thousand runs each) 
had a distance of approximately 479. Each of the twenty-four experiments was executed on a 450 MHz 
Dell PC. For the cycle lengths h = 500, 2000, 5000, and 2,000,000 the PC completed all six of the fixed 
temperature settings in approximately 24 seconds, 1.6 minutes, 4 minutes, and 25 hours, respectively. 
Different ;9-acceptable values are reported for each parameter setting of T and h. Note that the bounds 
for only y^-acceptable values that are reached over all 1000 replications for the h = 2,000,000 executions 
are reported; this allows the results for the lower and upper bounds fi-om Theorem 3.7 for smaller values 
of h to be validated. 

Orosz and Jacobson (2002a,b) report extensive computational results with the lower and upper 
bounds for E[Tp] in Theorem 3.7 for the S^A runs with cycle length h = 500, 2000, for fixed temperature 
values T = 0, 1,5, 20, 50, and 100. These results suggest that the lower and upper bound estimators are 
most effective for larger temperatures. Therefore, as the temperature parameter increases, the accuracy 
for predicting a lower and upper bound on E[Tp] improves. This is not surprising since as the temperature 
parameter increases, the S^A algorithm traverses the solution space more randomly, hence h(y) is more 
likely to be modeled as a geometric random variable with parameter P{T^ < h}. Furthermore, since the 
lower and upper bounds and the values for E[Tp] are estimates, then the upper bound estimates may 
actually be less than the estimates for E[Tp]. Conversely, the lower bound estimates may actually be 
greater than the estimates for E[Tp]. This error in the lower and upper bound estimates appears to occur 
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when P{Tp < h} < 0.20. This may also be due to the geometric distribution assumption on JhCi:^) not being 
valid. 

The computational results reported in Orosz and Jacobson (2002a,b) with a one hundred city instance 
of the TSP validate the lower and upper bound expressions for E[Tp] in Theorem 3.7. These results 
suggest that the lower and upper bound expressions for E[Tp] in Theorem 3.7 provide reasonable 
measures at higher constant temperature parameter settings. In particular, if similar values of P{Tp < h} 
are compared across different constant temperature parameter settings, T, for the same cycle length, h, 
then the upper and lower bound estimates for E[Tp] are most accurate for higher values of T. Moreover, 
the estimate for E[xp] falls between the upper and lower bound estimates for E[Tp] for approximately 40% 
of the data reported over all six tables in the upper data set where P {xp < h} < 1. However, of the 
instances where the estimate for E[Tp] does not fall between the upper and lower bound estimates for 
E[Tp], the estimates at higher constant temperature parameter settings are much closer to the upper and 
lower bound estimate range than the estimates at lower constant temperature parameter settings. These 
computational results also suggest that the upper and lower bound estimates for E[Tp] have a small 
standardized error at higher constant temperature parameter settings, hence provide useful information as 
estimates for E[Tp]. Lastly, these results suggest that the lower and upper bound expressions for E[xp] in 
Theorem 3.7 provide better measures when estimated with longer cycle lengths. This relationship is 
reasonable, since as the cycle length increases, the value for P{Tp<h} for each value of yS also increases. 

4. Construction Site Leveling Problem 
An interesting application of the research results obtain has been a construction site leveling problem, the 
details of which are reported in Henderson et al. (2003). To describe the results obtained, the following 
background information is provided. Heavy engineering and construction projects often require terrain 
modifications that involve moving large amounts of earth from one area to another area of a construction 
site. Excavating earth from cut (surplus) locations and hauling it for deposit into fill (deficit) locations 
requires earthmoving vehicles that are expensive to both operate and maintain, hence often constitute a 
large portion of a construction project's budget (see Bartholomew 2000). Ideally, planners must develop 
a strategy for contouring terrain that minimizes the total distance traveled by earthmoving vehicles 
between cut and fill locations. Minimizing the total distance traveled results in an overall savings to the 
construction project. 

The Shortest Route Cut and Fill Problem (SRCFP) seeks to find a route (begiiming and ending at the 
same cut location) for a single earthmoving vehicle that minimizes the total distance traveled between cut 
and fill locations. Complete enumeration of all possible solutions to the SRCFP would take a prohibitive 
amount of time. Therefore it is necessary to construct efficient and effective optimization algorithms to 
identify optimal/near-optimal routes for construction project planners. 

One approach to finding solutions to the SRCFP is to apply a greedy algorithm. A greedy algorithm 
applies a myopic strategy that begins at an arbitrary cut location, moves to the nearest fill location, and 
then moves from that fill location to the nearest cut location. This process of moving to the nearest 
available location continues until the construction project site is leveled (i.e., all the fill locations have 
been filled with earth from the cut locations). This report summarizes results obtained using this greedy 
algorithm. The cost associated with the solution found using the greedy algorithm provides an upper 
bound for the optimal solution for the problem. Local search algorithms have also be used to find near- 
optimal solutions to the SRCFP. This report also applies simulated annealing (one such local search 
algorithm) to the SRCFP. The report is organized as follows: First, definitions that are needed to 
describe the SRCFP and a brief description of the simulated annealing algorithm are presented. The 
SRCFP is then formally stated as an NP-Hard discrete optimization problem. Computational results for 
ninety instances of the SRCFP with simulated annealing algorithms are reported. Upper and lower 
bounds for the optimal objective function value for the SRCFP instances are also given. 

To describe the SRCFP, several definitions and terminology are needed. Define a construction 
project site as a plot of land with existing contours that can be modified to facilitate construction of an 
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object (e.g., road, building, runway). A field survey of the construction project site is typically 
preformed before any work begins on the construction project. This field survey results in a uniform grid 
that defines the construction project site by coordinate pairs. Define locations on the construction 
project site as coordinate pairs resulting firom a field survey of the construction project site. A cut 
location is a location on the construction project site with excess (surplus) earth and a fill location is a 
location on the construction project site that requires earth (deficit). The final grade is achieved when all 
excess earth at cut locations is removed and all earth deficits at fill locations are filled. Note that not all 
locations have surplus or deficit earth (i.e., a particular location elevation may be equal to the final 
grade). Define a unit load as the volume of earth that an individual vehicle can carry in one trip (e.g., a 
sixteen cubic yard scraper versus a thirty cubic yard dump truck). Define the number of unit cuts as the 
number of unit loads available (excess) at a cut location and the number of unit fills as the number of unit 
loads required (deficit) at a fill location. The construction project site contains m unit cuts and n unit 
fills. To guarantee that a feasible solution exists for the SRCFP, assume that adequate offsite earth is 
available to ensure that the total deficit can be satisfied and/or that a disposal site is available. This 
assumption implies m = n, since any excess cut (fill) location unit loads can be matched with dummy fill 
(cut) location unit loads. A route is the path (beginning and ending at the same cut location) that an 
earthmoving vehicle follows to visit every unit cut and every unit fill location exactly once, alternating 
between the cut and fill locations, until the terrain modifications are complete then returning to initial 
location. The total haul distance is the length of a given route. 

The objective of the SRCFP is to find a route that minimizes the total haul distance traveled by a 
vehicle (i.e., a Hamiltonian circuit with alternating unit cut and unit fill locations that transforms a given 
piece of terrain into the final grade). Since the SRCFP seeks a route that minimizes the total haul 
distance while visiting every location exactly once, the SRCFP is a special case of the symmetric 
traveling salesman problem. The SRCFP can also be related to the capacitated traveling salesman 
problem with pickups and deliveries (CTSPPD; see Anily and Bramel 1999), since it consists of two 
location types and uses a vehicle with limited capacity. Therefore, SRCFP is a special case of the 
swapping problem where the vehicle capacity is equal to one (Anily and Hassin 1992). Chalasani and 
Motwani (1995) presents a 2-approximation algorithm to address a special case of the swapping problem 
with two product types, which is equivalent to a special case of the SRCFP with vehicle capacity one. 

Note that the SRCFP can be formulated as a transportation problem by relaxing the requirement that a 
route must alternate between unit cut locations and unit fill locations, and by modifying the objective 
function to minimize the cost of the distance traveled between locations. The transportation problem 
optimally allocates resources by minimizing the distance traveled between cut and fill locations; however, 
it does not take into account the cost of traveling from each fill location to the next cut location. 
Therefore, relaxing the SRCFP to the transportation problem results in the concept of routes being lost. 

Local search algorithms require a neighborhood function at each solution in the solution space. 
Unfortunately, the very design of local search algorithms means that they often reach a local optimum 
(for a given neighborhood function), and may not be able to escape this local optimum to continue 
searching for global optima (e.g., deterministic local search; see Aarts and Lenstra 1997). Simulated 
annealing (Henderson, Jacobson, and Johnson 2003) is a local search algorithm used to address hard 
discrete optimization problems. Simulated annealing allows for the escape fi^om local optima, with the 
possibility of reaching a global optimum, by allowing uphill moves. To describe the implementation of 
simulated annealing, the following definitions are needed. Let Q be the solution space (i.e., the set of all 
possible solutions). Let f: Q -^ 31 be the objective function defined on the solution space. The goal is to 
find a global minima, ©*, (i.e., ©* e Q such that f(ft)) > f(co*) for all co e Q). Note that the objective 
function is assumed to be bounded to ensure that ffl* exists. Define ri(co) to be the neighborhood function 
for CO G Q. Therefore, associated with every solution, co e Q, are neighboring solutions, ri(ft)), that can be 
reached in a single iteration of the simulated annealing algorithm. Q. Define gij(k) to be the generation 
probability function for the neighborhood function r\, where the probability that cOjeri(a)i) is generated 
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during iteration k, is gij(k). Simulated annealing starts with an initial solution co e Q. A neighboring 
solution co' 6 ri(o)) is then generated. If f(co') > f(co), then co' is accepted as the current solution with 
probability e"^ ^'^ ^' *^°'^]'^®, were T(t) is a temperature parameter that is typically non-increasing at each 
iteration, t. 

The SRCFP can be formulated as a discrete optimization problem with the objective of minimizing 
the total haul distance traveled by an earthmoving vehicle between cut and fill locations. The number of 
visits to a location depends on the number of unit loads necessary to level the location. Since each unit of 
earth represents a unit load, the number of visits to each location is the amount of excess (or deficit) earth 
at that location. 

To model the SRCFP as a discrete optimization problem, several definitions are needed. Define G = 
{gu gi,---; g'n} to be a set of n locations. Define V = {vi, V2,...., Vn} to be a set of volumes for each 
location in G, (i.e., the number of unit cuts or unit fills). Define L = {//, I2,..., 4} to be the set of single 
unit cut and unit fill locations, that correspond to locations in G, where gi e G appears in L exactly |vi| 
times. Therefore, each element in L represents a single (either positive or negative) volume of cut or fill, 

n 

hence Y,\vi\ = k. Define Z"^= {ri, 1^2,...., tm} to be the set of unit cut locations and Z" = {fi, r2,.... /m} 

to be the set of unit fill locations, where L = L'^u L',\L\ = k, and \ L^l = \ L'\ = k / 2 = m. Recall that the 
number of unit cut locations equals the number of unit fill locations, and that a unit cut and a unit fill 
location carmot occur at the same location in G. Define c; € L^ to be a single unit cut location, i = 
1,2,...,m, and fieL' to be a single unit fill location, i = 1,2,...,m. Lastly, let R = (ci, fi,..., c^, f^) 
represent a route, defined as a Hamiltonian circuit over L with the added constraint that the route must 
alternate between unit cut locations and unit fill locations. The SRCFP discrete optimization problem is 
now formally stated. 

Shortest Route Cut and Fill Problem (SRCFP) 
INSTANCE: Given a set of m unit cut locations, L^ = {tiXi. ■■■Xm], and a set of m unit fill locations, L' 
= {/'1/2. ■■■Jm}, and a symmetric matrix D containing the distance between the cut and fill locations. 
QUESTION:  Find a route R = (c/, fi,..., c„, f^), Cj s Z"^, i = 1,2,.. .,m, ^ e i", i = 1,2,...,m, such that 

m-l 

g{R) = S   [Dia^ + D(fi,Cin)] + D(Cmfm) + i:)(/m,ci) is minimized. 
(=1 

The SRCFP includes the sjmimetric traveling salesman (optimization) problem (STSP) (Aarts and 
Lenstra 1997) as a special case. Therefore, the SRCFP is NP-Hard (Garey and Johnson 1979). Define Q 
to be the solution space of routes with alternating unit cut and unit fill locations (i.e., Q = {(cj, f,,..., €„, 
fm), Cj G L*',fi G L~, i= 1,2,.. .,m}). The cardinality of Q depends on the number of unit cut and unit fill 
locations for the given problem instance. Lemma 4.1 provides a closed form expression for this number, 
and shows that the size of the solution space grows exponentially as the number of unit cut locations and 
units fill locations increase. 

Lemma 4,1:  Given an instance of the SRCFP with m unit cut and m unit fill locations, the size of the 
solution space is |Q| = {m-\)\ ml 12. 
Proof: See Henderson et al. (2003). 

Computational results were reported with simulated annealing applied to ninety randomly generated 
instances of the SRCFP. Each instance of the SRCFP corresponds to a construction project site 
consisting of a square grid with 25, 49, or 81 locations (i.e., a construction site survey resulting in 5 x 5, 
7x7, and 9x9 locations). Thirty instances with each such grid size are reported. The distance matrices 
are constructed with one unit of distance between each location in the horizontal direction and one unit of 
distance between each location in the vertical direction. The Euclidean distance between locations i and 
j, i,j=\,2,.. .m, is denoted by Dy. For each instance, the volume of earth (i.e., number of unit cuts or 
unit fills) at every location is generated as a discrete uniform [-3, 3] random variable.  Moreover, each 
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problem instance includes an offsite location one unit of distance vertically from location In. This 
location guarantees the assumption that adequate offsite earth is available to ensure that the total deficit 
can be satisfied and/or that a disposal site is also available, hence a balanced construction project site is 
generated (i.e., m = n). Note that the random volume of earth generated at each location determines the 
actual size of the problem instance (i.e., the number of unit cut and unit fill locations). For example, the 
largest 9x9 locations SRCFP problem instance can in theory include as many as 243 total unit cut and 
unit fill locations, though on average, such problem instances will contain approximately 121.5 unit cut 
and unit fill locations. From Table 4.3, all thirty randomly generated instances of the SRCFP for this size 
contained between 100 and 134 total unit cut and unit fill locations, hence provide large SRCFP problem 
instances to assess the effectiveness of simulated aimealing. 

For simulated aimealing, the cooling schedule {T(t)} is updated by multiplying the previous 
temperature parameter by an increment multiplier, P, where 0 < P < 1 (i.e., T(t) = pT(t-l)). The initial 
temperature, T(0) = .2 (C + F)M where C = number of unit cut locations, F = number of unit fill 
locations andM = Max{£)(/,•,/,), i,j = 1, 2,..., m} with P = .98 for the ninety randomly generated instances 
of the SRCFP. The neighborhood function r| implemented for all experiments is defined as follows: For 
all routes R = {cj, f,, C2, fi, —Cm, fm\, the neighbors of i?, y\{K), are defined by selecting any d,c" e {cj, 
C2, ■■■, Cm}, c' ^ c", and reversing the sequence of locations (both cut and fill) between them. Therefore 

1](R) = {R' eQ.:R' = (cj, fi, C2, f2,...Ci.i. fi^i, cj, fj-i,Cj.i, ...,fi+i,Ci^i,fi, Cu fj, Cj+i, fj+,, .... c„, /„), 
for some i,j = 1,2,.. .,m, i <j}. 

This neighborhood function is similar to 2-opt for the traveling salesman problem (Aarts and Lenstra 
1997). Note that since the distance matrix is symmetric, this neighborhood function includes all routes 
where two fill locations are selected and the sequence of locations between them are reversed. To 
generate a neighbor at each iteration, c' is generated uniformly over the set {ti, fi,..., Tm} and c" is 
generated uniformly over the set {{t\, tj,..., tm} \ W}}- 

Computational results with simulated aimealing are reported for the ninety randomly generated 
instances of the SRCFP. Simulated annealing was executed with x = 500 and N(t) = 2(C+F) for t = 1, 2, 
..., T. Fifty replications applying simulated annealing to each problem instance were executed. The 
initial solution for each replication was randomly generated by considering two sets: one of unit cut 
locations and one of unit fill locations. These two sets are randomly permuted to generate the resulting 

unit cut and unit fill locations for the initial route. The initial route, R, was then reconstructed by 
merging the permuted unit cut and unit fill sets alternating unit cut and unit fill locations. Initial 
solutions for each replication were obtained in the same manner by randomly permuting the first 
replication's initial solution. 

The mean (|j,), the standard deviation (a), and the minimum and maximum of the objective function 
values over the fifty replications are reported. Tables 4.1-4.3 report results for the fifty replications of 
the simulated annealing algorithm for each of the ninety randomly generated instances of the SRCFP. 
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Table 4.1 
Simulated Annealing Results 

(5 Unit Cut Locations and 5 Unit Fill Locations) 
Problem (C+F) 1^ a Minimum Maximum 

5x5 1 36 41.36 0.48 41.14 42.37 
5x5 2 38 47.74 0.32 47.37 48.02 
5x5 3 36 61.04 0.08 60.97 61.40 
5x5 4 38 49.16 0.12 49.00 49.25 
5x5 5 36 59.57 0.62 58.80 60.73 
5x5 6 46 68.36 0.59 68.02 70.13 
5x5 7 30 45.14 0.60 44.50 46.50 
5x5 8 38 64.48 0.11 64.47 65.27 
5x5 9 40 77.24 0.00 77.24 77.24 

5x5 10 44 49.08 0.34 48.55 49.96 
5x5 11 38 54.72 0.19 54.65 55.24 
5x5 12 32 43.71 0.16 43.66 44.25 
5x5 13 40 51.50 0.68 51.02 52.44 
5x5 14 36 60.88 0.22 60.78 61.57 
5x5 15 40 62.56 0.32 62.39 63.19 
5x5 16 44 54.14 0.46 53.90 55.31 
5x5 17 34 54.27 0.30 54.14 54.90 
5x5 18 34 46.38 0.23 46.34 47.51 
5x5 19 24 38.54 0.46 38.33 39.51 
5x5 20 26 40.60 0.00 40.60 40.60 
5x5 21 30 37.14 0.41 36.96 38.31 
5x5 22 34 50.26 0.24 49.98 50.68 
5x5 23 44 58.66 0.40 58.19 59.74 
5x5 24 36 58.44 0.72 58.09 60.83 
5x5 25 42 66.86 0.17 66.84 68.06 
5x5 26 42 88.04 0.04 88.01 88.21 
5x5 27 38 65.42 0.05 65.36 65.47 
5x5 28 32 41.48 0.32 41.38 42.44 
5x5 29 42 57.32 0.19 57.16 57.78 
5x5 30 48 55.48 0.47 54.61 55.86 
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Table 4.2 
Simulated Annealing B 

(7 Unit Cut Locations and 7 Unit 
esults 
Fill Locations) 

Problem (C+F) H a Minimum Maximum 
7x7 1 60 101.45 0.00 101.45 101.45 

7x7 2 66 106.34 0.89 105.11 108.01 
7x7 3 74 107.17 0.57 106.31 109.27 
7x7 4 68 130.00 0.07 129.90 130.13 
7x7 5 66 99.45 0.29 98.97 100.30 
7x7 6 72 105.32 0.87 104.42 107.79 
7x7 7 78 160.77 0.59 160.00 162.11 
7x7 8 78 163.89 0.39 163.21 164.65 
7x7 9 68 112.13 0.76 111.62 114.17 

7x7 10 80 118.76 0.35 118.01 119.59 
7x7 11 80 134.47 0.48 133.86 135.82 
7x7 12 76 104.70 0.50 103.95 106.19 
7x7 13 62 85.50 1.20 84.07 90.52 
7x7 14 70 106.22 1.02 105.76 110.82 
7x7 15 72 129.37 0.72 128.403 131.42 
7x7 16 64 94.22 0.60 93.96 96.33 
7x7 17 66 104.67 0.32 104.09 105.41 
7x7 18 66 124.96 0.38 124.68 125.97 
7x7 19 80 102.39 0.52 101.83 104.89 
7x7 20 56 115.50 0.52 115.23 118.58 
7x7 21 68 98.23 0.67 97.33 100.32 
7x7 22 68 95.40 0.70 94.97 98.44 
7x7 23 68 108.68 0.52 108.25 111.54 
7x7 24 66 107.42 0.50 106.83 108.83 
7x7 25 72 95.95 0.71 94.86 97.04 
7x7 26 84 140.17 0.86 139.54 141.79 
7x7 27 86 117.90 0.62 117.18 119.21 
7x7 28 76 115.20 1.05 113.90 119.60 
7x7 29 70 99.73 0.48 99.24 101.46 
7x7 30 68 123.96 0.26 123.57 124.92 
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Table 4.3 
Simulated Annealing Results 

(9 Unit Cut Locations and 9 Unit Fill Locations) 
Problem (C+F) H CT Minimum Maximum 
9x9 1 111 245.56 0.68 244.62 246.87 

9x9 2 132 173.03 1.73 170.17 176.86 
9x9 3 124 203.55 0.70 202.25 205.21 
9x9 4 116 178.91 1.62 177.00 185.75 
9x9 5 118 215.41 0.70 214.34 217.41 
9x9 6 132 212.51 1.12 210.53 215.62 
9x9 7 126 204.15 0.98 202.53 206.83 
9x9 8 134 187.92 1.00 186.83 190.84 
9x9 9 116 193.78 0.98 191.87 195.49 
9x9 10 100 224.54 0.57 223.66 225.35 
9x9 11 120 219.78 0.99 217.93 223.31 
9x9 12 116 243.29 0.47 242.49 244.34 
9x9 13 116 172.06 0.96 170.40 174.16 
9x9 14 112 169.44 1.03 168.10 172.85 
9x9 15 122 217.55 0.84 216.33 219.90 
9x9 16 112 156.03 1.21 153.78 160.17 
9x9 17 110 244.15 0.71 242.87 245.78 
9x9 18 108 164.46 1.27 162.67 167.49 
9x9 19 128 173.27 1.07 171.72 176.32 
9x9 20 130 259.19 0.74 257.70 261.39 
9x9 21 132 201.23 1.19 199.71 204.81 
9x9 22 116 165.38 0.57 164.62 167.35 
9x9 23 136 198.46 1.20 196.65 202.37 
9x9 24 120 259.19 0.56 258.58 261.34 
9x9 25 120 178.98 1.21 177.40 183.23 
9x9 26 124 182.78 1.61 180.81 186.85 
9x9 27 132 199.87 0.99 198.22 204.15 
9x9 28 102 163.11 0.64 162.26 164.83 
9x9 29 114 216.46 0.84 215.14 218.58 
9x9 30 118 211.37 0.62 210.42 213.34 

To determine if the solution found using the simulated annealing algorithm was indeed optimal, the 
following integer programming (IP) model of SRCFP is formulated, based on the Miller-Tucker-Zemlin 
formulation (Miller et al. 1960) of the traveling salesman problem. 
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Min      E      DyXy 
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jeL- 
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jer 

JeL- 

p,+l-k{\-Xy)< pj    for all {i,j) e J, withy ^ 1 

X,-,- + Xy; < 1 for all {i, j) e A, with i < j 

xye{0,l] for Sill iij)e A 

Pie{l,...,k} i = l,...,k 

where L = {Ij, h,..., 4} is the set of single unit cut and fill locations, L^ is the set of unit cut locations, L 
is the set of unit fill locations, k is the number of unit cut and fill locations, A is the set of arcs from unit 
cut locations to unit fill locations and from unit fill locations to unit cut locations, /?,- is the position of /,■ in 
the Hamiltonian circuit, and xy is one if /,■ immediately precedes /,• in the Hamiltonian circuit, otherwise Xy 
is zero. 

ILOG OPL Studio 3.0 was used to generate the integer programs for the test problems and CPLEX 
6.6 was used to attempt to solve the resulting IP's. The CPLEX parameters were set at their default 
values, with the time limit set at five hours and the upper cutoff parameter set equal to the best value 
found by the simulated armealing algorithm plus 0.001. The problems were run on a Pentium IE 550 
MHZ processor with 128Mb of random access memory. 

CPLEX can be used to solve the randomly generated 5x5 problem instances. However, for a 
randomly generated 7x7 problem instance, CPLEX was terminated after four hours of computation 
because it ran out of random access memory to store the subproblems. During the search, CPLEX 
explored nearly 34,000 subproblems, but did not find a better solution than the best one found by the 
simulated annealing algorithm. Furthermore, it appears that the problem cannot be solved in any 
reasonable length of time even on a faster machine with more memory, since there were approximately 
31,000 subproblems waiting to be explored at the time of termination, and this number was still 
increasing. 

Since CPLEX was unable to solve the larger problems, and thus determine if the best solutions found 
by the simulated annealing algorithms are optimal, the Held-Karp 1-tree lower bound (see Held and Karp 
1970, 1971) was computed for each of these problems in order to compute an upper bound on the 
distance between the best value found by the simulated annealing algorithm and the optimal value. A 
brief description of this lower bound is included here. Every solution of SRCFP is a Hamiltonian circuit, 
which can be viewed as a spanning tree of nodes 2,3,...,k together with two edges incident to node 1. 
Therefore, the cost of a minimum spanning tree of nodes 2, 3,..., k plus the cost of the two cheapest 
edges incident to node 1 is a lower bound for the problem. This lower bound can be improved by using 
Lagrange multipliers on the nodes of the graph. Held et al. (1974) show that subgradient optimization 
can be used to converge to the optimal set of Lagrange multipliers. Tables 4.4 through 4.6 contain the 
best value found by the simulated armealing algorithm and the Held-Karp 1-tree lower bounds for the 
ninety problem instances. They also contain the gap (defined as the difference between the best value 
found by the simulated annealing algorithm and the lower bound divided by the lower bound). 
Moreover, a greedy algorithm is presented as an upper bound to assess the effectiveness of simulated 
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annealing. The greedy algorithm implemented takes an initial unit cut location, c,, and moves to the 
nearest (i.e., closest in distance) unvisited unit fill location (i.e., j^ = argmin{Z)(ct, j^), hj = 1, 2,..., ra,fj 
has not been visited}. From this unit fill location, j^, the greedy algorithm moves to the nearest unvisited 
cut location (i.e., c,- = argmin{Z)(^, c,), i,j = 1, 2,..., m, c,- has not been visited}. This process continues 
until the construction project site is leveled, resulting in a paired route of alternating unit cut and unit fill 
locations. This straightforward technique provides a route that although rarely optimal has an objective 
function value that is typically much below that of a randomly generated solution. 

Table 
Held-Karp 1-Tree Lower Bounds 

(5 Unit Cut Locations an( 

4.4 
and Greedy Algorithm Results 
I 5 Unit Fill Locations) 

Problem SA Best Value Lower Bound 
(LB) 

Gap between SA 
Best Value and LB 

Greedy 
Algorithm 

5x5 1 41.14 41.136 0.0000 46.54 
5x5 2 47.37 47.37 0.0000 54.19 
5x5 3 60.97 60.96 0.0002 69.83 
5x5 4 49.00 48.74 0.0053 51.36 
5x5 5 58.80 58.80 0.0000 75.78 
5x5 6 68.02 67.73 0.0043 78.48 
5x5 7 44.50 44.41 0.0021 51.94 
5x5 8 64.47 64.47 0.0000 72.37 
5x5 9 77.24 77.16 0.0009 90.94 
5x5 10 48.55 48.25 0.0063 57.14 
5x5 11 54.65 54.54 0.0021 73.60 
5x5 12 43.66 43.67 0.0000 52.65 
5x5 13 51.02 50.81 0.0042 59.84 
5x5 14 60.78 60.78 0.0000 71.75 
5x5 15 62.39 62.34 0.0008 72.39 
5x5 16 53.90 53.53 0.0068 66.72 
5x5 17 54.14 54.14 0.0000 65.06 
5x5 18 46.34 46.34 0.0000 58.38 
5x5 19 38.33 38.07 0.0067 41.75 
5x5 20 40.60 40.58 0.0006 44.95 
5x5 21 36.96 36.96 0.0000 40.49 
5x5 22 49.98 49.97 0.0003 56.17 
5x5 23 58.19 58.06 0.0023 63.22 
5x5 24 58.09 58.09 0.0000 63.63 
5x5 25 66.84 66.83 0.0001 80.03 
5x5 26 88.01 87.95 0.0007 95.71 
5x5 27 65.36 65.30 0.0010 74.98 
5x5 28 41.38 41.34 0.0008 48.43 
5x5 29 57.16 57.10 0.0011 65.60 
5x5 30 54.61 54.28 0.0062 61.51 
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Table 4.5 
Held-Karp 1-Tree Lower Bounds and Greedy Algorithm Results 

(7 Unit Cut Locations and 7 Unit Fill Locations) 
Problem SA Best Value Lower Bound 

(LB) 
Gap between SA 

Best Value and LB 
Greedy 

Algorithm 
7x7 1 101.45 100.53 0.0092 127.10 
7x7 2 105.11 104.80 0.0030 131.37 
7x7 3 106.31 105.94 0.0034 136.15 
7x7 4 129.90 128.81 0.0085 148.99 
7x7 5 98.97 98.63 0.0034 109.57 
7x7 6 104.42 103.82 0.0057 128.58 
7x7 7 160.00 159.96 0.0002 176.88 
7x7 8 163.21 163.19 0.0001 183.90 
7x7 9 111.62 111.31 0.0028 124.06 

7x7 10 118.01 117.47 0.0046 140.17 
7x7 11 133.86 132.61 0.0094 156.50 
7x7 12 103.95 103.81 0.0013 124.83 
7x7 13 84.07 83.53 0.0064 97.76 
7x7 14 105.76 103.97 0.0172 131.18 
7x7 15 128.40 127.30 0.0087 169.61 
7x7 16 93.96 93.19 0.0082 111.00 
7x7 17 104.09 103.53 0.0054 123.38 
7x7 18 124.68 124.67 0.0000 151.75 
7x7 19 101.83 100.95 0.0087 132.88 
7x7 20 115.23 115.23 0.0000 136.16 
7x7 21 97.33 96.87 0.0048 104.51 
7x7 22 94.97 94.94 0.0003 110.05 
7x7 23 108.25 107.84 0.0038 136.03 
7x7 24 106.83 106.06 0.0073 118.60 
7x7 25 94.86 94.24 0.0066 112.64 
7x7 26 139.54 139.29 0.0018 173.34 
7x7 27 117.18 115.73 0.0125 133.35 
7x7 28 113.90 113.66 0.0021 140.01 
7x7 29 99.24 98.55 0.0070 114.49 
7x7 30 123.57 123.52 0.0005 147.04 
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Table 4.6 
Held-Karp 1-Tree Lower Bounds and Greedy Algorithm Results 

(9 Unit Cut Locations and 9 Unit Fill Locations) 

Problem 
SA Best Value Lower Bound 

(LB) 
Gap between SA 

Best Value and LB 
Greedy 

Algorithm 
9x9 1 244.62 243.86 0.0032 311.84 
9x9 2 170.17 169.26 0.0054 204.40 
9x9 3 202.25 201.04 0.0060 237.06 
9x9 4 177.00 176.31 0.0040 222.43 
9x9 5 214.34 213.27 0.0050 264.99 
9x9 6 210.53 207.80 0.0131 250.71 
9x9 7 202.53 200.21 0.0116 245.63 
9x9 8 186.83 184.31 0.0137 242.87 
9x9 9 191.87 191.62 0.0013 216.29 

9x9 10 223.66 222.67 0.0044 267.37 
9x9 11 217.93 216.29 0.0076 286.19 
9x9 12 242.49 241.16 0.0055 302.43 
9x9 13 170.40 168.45 0.0115 217.73 
9x9 14 168.10 167.15 0.0057 198.37 
9x9 15 216.33 214.90 0.0067 284.97 
9x9 16 153.78 151.91 0.0123 204.55 
9x9 17 242.87 241.80 0.0044 289.50 
9x9 18 162.67 161.78 0.0055 196.99 
9x9 19 171.72 170.70 0.0060 194.25 
9x9 20 257.70 255.67 0.0079 314.66 
9x9 21 199.71 198.26 0.0073 240.30 
9x9 22 164.62 161.56 0.0189 203.28 
9x9 23 196.65 195.04 0.0083 259.14 
9x9 24 258.58 258.29 0.0011 305.55 
9x9 25 177.40 175.48 0.0109 228.07 
9x9 26 180.81 179.11 0.0095 233.47 
9x9 27 198.22 196.28 0.0099 256.40 
9x9 28 162.26 162.04 0.0013 197.52 
9x9 29 215.14 214.91 0.0010 262.76 
9x9 30 210.42 210.20 0.0011 252.72 

The best solutions found by the simulated annealing algorithm had an average gap of. 18%, .51 % and 
.7% for the randomly generated instances of problems corresponding to grid sizes 5x5,7x7, and 9x9, 
respectively. Moreover, all optimal solutions found using simulated armealing were within .68%, 1.72%, 
and 1.89% of the lower bound for the randomly generated instances of problems corresponding to grid 
sizes 5 X 5, 7 X 7, and 9x9, respectively. Note that the gap is measured relative to a lower bound, not 
the true optimal solution. It is possible that a significant portion of the gap is due to the lower bound. 
The best solutions obtained by the simulated armealing algorithm are uniformly better than those 
obtained by the greedy algorithm. 

In the construction industry, using earthmoving vehicles to transform an existing terrain into a final 
grade (often a level project site) is a costly operation and may represent a significant portion of the over- 
all construction project budget. Reducing the total distance traveled by earthmoving vehicles results in 
cost savings in terms of fuel consumption, time, and equipment maintenance. This report summarizes the 
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SRCFP, which seeks to identify a route that minimizes the total haul distance traveled by a vehicle 
between cut and fill locations and returns the vehicle to its starting location once the final grade is 
achieved. Finding a route that minimizes the total haul distance is computationally hard. Simplifying the 
SRCFP to a transportation problem results in the optimal assignment of resources, but does not provide 
an optimal route. Formulating the SRCFP as a discrete optimization problem and using local search 
strategies provides near-optimal vehicle routes in a reasonable amount of time. 

There are several opportunities to extend the results described in this report. Construction sites and 
quarries are rarely oriented to allow complete freedom of maneuvering for all vehicle types. Routes are 
limited to haul roads or vehicle characteristics that make some terrain impassible or prohibitively 
expensive to traverse, in terms of fuel and/or equipment wear. One assumption in the SRCFP 
formulation is that the paths between cut and fill location are direct lines (i.e., the equipment is capable 
of negotiating any terrain without penalty). A more realistic approach is to incorporate haul roads and 
terrain features into the distance matrix such that a more realistic construction site can be modeled. 
Work is in progress to collect terrain data from actual construction sites that can be incorporated into 
future models. 

A natural extension of the current problem formulation is to add penalties to routes that force the 
equipment to negotiate undesirable terrain. Given the choice between avoiding a hill versus going over a 
hill, the equipment operator's decision is based on cost in terms of fuel, distance or feasibility. 
Incorporating penalty functions for undesirable terrain may provide more realistic solutions that are of 
greater interest to the construction industry. Vehicle performance characteristics and fuel consumption 
rates are available and can also be incorporated into the model. All the modifications described here are 
meant to add realism to the problem. However, they require extensive data collection that may be 
difficult to obtain firom actual construction projects to support the resulting model. 

The same technique used for optimizing cut and fill patterns can be applied to rapid runway repair 
for both military and nonmilitary airfields. Rapid runway repair is a concern for civilian airports that 
require maintenance during limited hours of non-use, and with military airfields that require repair firom 
incoming artillery, bombs or missiles. In both cases, time of repair and availability of equipment is the 
major concern, since busy airports cannot afford to have a runway down for a significant length of time 
and military runways must be fully mission capable during times of conflict. The SRCFP can be 
modified to accommodate multiple types of equipment such as earthmoving vehicles as well as concrete 
and asphalt transporters. Minimizing travel time by developing routes for each type of vehicle between 
material stockpiles to repair sites is critical to the success of these operations. 

Optimal strategies for conducting searches with limited assets are also a natural extension of this 
model. Different platforms (e.g., helicopters versus fixed wing or satellite) with varying degrees of 
effectiveness are used for search and rescue operations. Due to the timeliness required in search and 
rescue operations, efficient use of available assets is critical to success. The optimal routes developed by 
approaching the SRCFP with local search strategies can be extended to optimize a fleet of search 
platforms. The same concepts can be extended to optimizing surveillance assets to maximize coverage of 
a given location. 

5. Other Research Results 
In addition to the results reported above,, several other results were obtained during the period of the 
grant. These results are briefly discussed here. 

Jacobson, Kobza and Easterling (2001) present a new approach to addressing the difficult tradeoff 
between false alarms and false clears in aviation security systems. By modeling the problem as a discrete 
optimization problem, the paper establishes that the resulting problem to be NP-hard, and then develops 
heuristic procedures to address the problem. The results in this paper have the potential to change the 
way in which aviation security system information can be synthesized and interpreted. These results may 
also have important applications in health care (in diagnosing certain types of cancer) and information 
systems (in detecting when a system has crashed). Note that this paper also received the 2003 Best Paper 
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award in HE Transactions focused issue on Operations Engineering. Jacobson, Bowman, and Kobza 
(2001) introduce and analyzes the flight segment baggage value (FSBV) and the passenger segment 
baggage value (PSBV) performance measures for baggage screening security systems. The paper also 
includes a real-world example using actual flight data from the Official Airline Guide (OAG) to illustrate 
an application of the models and results presented in the paper. Virta et al. (2002) look at an important 
extension of how the origination of selectees can impact the overall security of an air system. These 
results are particularly noteworthy since two of the 19 hijackers during the 9/11/2001 terrorist activities 
boarded planes in Portland, Maine and coimected to their flights in Boston. The results in this paper 
identify how such strategies are a major weakness of the air security system, and quantify the risks 
associated with such security holes. Jacobson et al. (2003) describe how discrete optimization models 
can be used to address aviation security system deployment and utilization questions, based on three 
performance measures that quantify the effectiveness of airport baggage screening security device 
systems. These models are used to solve for optimal airport baggage screening security device 
deployments considering the number of passengers on a set of flights who have not been cleared using a 
security risk assessment system in use by the Federal Aviation Administration (i.e., passengers whose 
baggage is subjected to screening), the number of flights in this set, and the size of the aircraft for such 
flights. Several examples are provided to illustrate these results, including an example that uses data 
available from the Official Airline Guide. Virta et al. (2003) consider the cost and benefits of various 
checked baggage screening strategies. Determining how to effectively operate security devices is as 
important to overall system performance as developing more sensitive security devices. In light of recent 
federal mandates for 100% screening of all checked baggage, this paper studies the tradeoffs between 
screening only selectee checked baggage and screening both selectee and non-selectee checked baggage 
for a single baggage screening security device deployed at an airport. This tradeoff is represented using a 
cost model that incorporates the cost of the baggage screening security device, the volume of checked 
baggage processed through the device, and the outcomes that occur when the device is used. The cost 
model captures the cost of deploying, maintaining, and operating a single baggage screening security 
device over a one-year period. The study concludes that as excess baggage screening capacity is used to 
screen non-selectee checked bags, the expected annual cost increases, the expected annual cost per 
checked bag screened decreases, and the expected annual cost per expected number of threats detected in 
the checked bags screened increases. These results indicate that the marginal increase in security per 
dollar spent is significantly lower when non-selectee checked bags are screened than when only selectee 
checked bags are screened. 

Vazquez-Abad and Jacobson (2001) present a new gradient estimator for the steady-state expected 
sojourn (system) time in a nonpreemptive priority queueing system. The estimator uses the concept of a 
phantom system, together with the basic ideas in harmonic gradient estimation, to develop a single 
simulation run estimator, termed the phantom harmonic gradient estimator. The estimator is shown to be 
strongly consistent and sfrongly consistent in the average sense as the sample size grows. An upper 
bound for the variance of the PHG estimator is presented. This bound is used to show that under mild 
conditions, the variance of the PHG estimator tends to zero as both the number of phantom systems and 
the sample size approach infinity. A variance reduction technique that simultaneously uses both common 
and antithetic random numbers is presented. Computational results on several non-preemptive queueing 
systems illustrate the effectiveness of the method. 

Sullivan and Jacobson (2001) present new necessary and sufficient convergence conditions for 
generalized hill climbing algorithms. These conditions are then contrasted with similar conditions for 
simulated annealing algorithms, a particular type of generalized hill climbing algorithms, to show that 
they reduce to the most often cited and used conditions for such algorithms. These results provide 
important insights into how the restrictive algorithmic consfraints imposed by simulated aimealing can be 
circumvented using relative rates at which global and local optima can be accessed in the solution space 
by generalized hill climbing algorithms. 
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Jacobson and Yucesan (2002) identify and investigate common links between discrete-event 
simulation and discrete optimization algorithms. The primary contribution of the paper is two search 
problem formulations that are proven to be NP-hard, and which have implication both in the design and 
analysis of discrete event simulation models and in the design and implementation of discrete 
optimization algorithms. Fleischer and Jacobson (2002) show how the Boltzmann distribution used in 
the steady-state analysis of the simulated annealing algorithm gives rise to several scale invariant 
properties. Scale invariance is first presented in the context of parallel independent processors and then 
extended to an abstract form based on lumping states together to form new aggregate states. These 
lumped or aggregate states possess all of the mathematical characteristics, forms and relationships of 
states (solutions) in the original problem in both first and second moments. These scale invariance 
properties therefore permit new ways of relating objective function values, conditional expectation 
values, stationary probabilities, rates of change of stationary probabilities and conditional variances. 
Such properties therefore provide potential applications in analysis, statistical inference and 
optimization. 

Sewell and Jacobson (2003) is part of an on going research activity into the application of operation 
research tools in the health care domain. The Recommended Childhood Immunization Schedule has 
become sufficiently crowded that the prospect of adding additional vaccines to this schedule may not be 
well received by either health- care providers or parents/guardians. This has encouraged vaccine 
manufacturers to develop combination vaccines that can permit new vaccines to be added to the schedule 
without requiring children to be exposed to an unacceptable number of injections during a single clinic 
visit. This paper develops an integer programming model to assess the economic premium that exists in 
having combination vaccines available. The results of this study suggest that combination vaccines 
provide a cost effective alternative to individual vaccines and that further developments and innovations 
in this area by vaccine manufacturers can provide significant economic and societal benefits. Jacobson, 
Kamani, and Sewell (2003) report the results of reverse engineering a vaccine selection algorithm to 
evaluate the economic value of a hepatitis B - Haemophilus influenzae type B combination vaccine that 
is currently under federal contract in the United States. This analysis captures the tradeoff between the 
cost assigned to administering an injection and the price of the vaccine that earns it a place in the lowest 
overall cost formulary. Jacobson and Sewell (2002) report other such results using Monte Carlo 
simulation. 

Swisher et al. (2003) present a survey of the literature for two widely used classes of statistical 
methods for selecting the best design from among a finite set of k alternatives: ranking and selection 
(R&S) and multiple comparison procedures (MCPs). A comprehensive survey of each topic is presented 
along with a summary of recent unified R&S-MCP approaches. Procedures are recommended based on 
their statistical efficiency and ease of application; guidelines for procedure application are offered. 

Armstrong and Jacobson (2003) examine the complexity of global verification for MAX-SAT, 
MAX-A:-SAT (for k > 3), Vertex Cover, and the Traveling Salesman Problem. These results are obtained 
by adaptations of the transformations that prove such problems to be NP-complete. The class of 
problems PGS is defined to be those discrete optimization problems for which there exists a polynomial 
time algorithm such that given any solution ro, either a solution can be found with a better objective 
function value or it can be concluded that no such solution exists and co is a global optimum. This paper 
demonstrates that if any one of MAX-SAT, MAX-A:-SAT (for k > 3), Vertex Cover, or Traveling 
Salesman Problem are in PGS, then P = NP. 
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